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Standard Model

The Standard Model (SM) is a gauge theory with the group SU(3) ×
SU(2) × U(1) and chiral fermions, which very successfully describes the
strong and electroweak interactions. The gauge symmetry is spontaneously
broken by the help of the Higgs mechanism,

SU(3)× SU(2)× U(1)→ SU(3)× U(1)em,

producing the massive Z- and W±-bosons together with the Higgs boson.
Their experimental discoveries have been excellent con�rmations of the
Standard Model. From the theoretical point of view, it is a renormalizable
model, in which anomalies introduced by chiral fermions cancel.
However, it is widely believed that the SM is not an ultimate theory.
Quantum numbers of quarks and leptons imply that the gauge group
SU(3)× SU(2)× U(1) can be a remnant of a wider gauge group, e.g.,

SU(3)× SU(2)× U(1) ⊂ SU(5).

The SO(10) group allows to place all fermions of one generation (including
the right neutrinos) to the irreducible representation 16.
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Incompleteness of the Standard Model

However, the evolution of running coupling constants in SM is not
compatible with the prediction of Grand Uni�cation Theories.
Moreover, the uni�cation mass MX ∼ 1015GeV leads to unacceptably
rapid proton decay.
From the theoretical point of view, quadratically divergent quantum
corrections to the mass of the Higgs boson produce the problem of Higgs
mass �ne tuning.
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Supersymmetry and the Standard Model

A very promising way to solve the above problems is to consider N = 1
supersymmetric extensions of SM.
In the supersymmetric version of SM running of the gauge coupling
constants agree with the predictions of Grand Uni�ed Theories (GUT).
Increasing of the uni�cation mass essentially increases the proton life time,
τ ∼M4

X . There are no quadratically divergent quantum corrections to the
Higgs mass.
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Supersymmetry and the Standard Model

Supersymmetric models predict a lot of new particles. There are
superpartners of quarks, leptons, and gauge bosons. Supersymmetry also
requires two Higgs doublets, which produces 2 × 2 × 2 − 3 = 5 Higgs
bosons.
To make masses of superpartners su�ciently large, it is necessary to break
supersymmetry. Although it is highly desirable to break supersymmetry
spontaneously, the simplest models (like MSSM) include soft terms, which
explicitly break supersymmetry, but do not produce quadratic divergences.
There are 4 types of the soft terms, including, e.g., gaugino masses.
In GUT theories running gaugino masses can be uni�ed.

Investigation of quantum corrections in SUSY theories and theories with
softly broken SUSY and comparing them with experimental data can give
information about physics beyond SM.
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N = 1 supersymmetric gauge theories

It is convenient to describe N = 1 SUSY theories using N = 1 super�elds,
because in this case supersymmetry is manifest. In this language, the N =
1 SYM theory is given by the action

S =
1

2e2
0

Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ φ∗i(e2V )i

jφj

+
{∫

d4x d2θ
(1

4
mij

0 φiφj +
1

6
λijk0 φiφjφk

)
+ c.c.

}
,

where θ denotes an auxiliary Grassmannian coordinates. V (x, θ, θ̄) is the
gauge super�eld and the supersymmetric gauge �eld strength is de�ned as

Wa =
1

8
D̄2
(
e−2VDae

2V
)
.

φi(y
µ, θ) are chiral matter super�elds, D̄ȧφi = 0, where yµ ≡ xµ +

iθ̄ȧ(γµ)ȧ
bθb is the chiral coordinate and Da and D̄ȧ are the right and

left supersymmetric covariant derivatives, respectively.
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N = 1 supersymmetric gauge theories

We assume that the theory is invariant under the gauge transformations

φ→ eAφ; e2V → e−A
+

e2V e−A,

where the parameter A = ie0A
BTB is an arbitrary chiral super�eld. This

gives the restrictions to the masses and Yukawa couplings,

mim
0 (TA)m

j +mmj
0 (TA)m

i = 0;

λijm0 (TA)m
k + λimk0 (TA)m

j + λmjk0 (TA)m
i = 0.

For renormalizable theories the superpotential cannot be more than cubic
in the chiral matter super�elds.

It is well-known that ultraviolet behaviour of supersymmetric theories
is better than in the non-supersymmetric case. For example, there are
no quadratic divergences in N = 1 supersymmetric Yang�Mills theories
(SYM) with matter. As we already mentioned, this is very impotent for
phenomenology.
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Non-renormalization theorems in D = 4 supersymmetric theories

It is well known that the UV behavior of supersymmetric theories is better
due to some non-renormalization theorems.

N = 4 supersymmetric Yang�Mills (SYM) theory is �nite in all orders.

Divergencies in N = 2 SYM theories exist only in the one-loop
approximation. N = 2 hypermultiplets are not renormalized.

The superpotential in N = 1 supersymmetric theories has no divergent
quantum corrections.
The β-function of N = 1 SYM theories is related to the anomalous
dimension of the matter super�elds by the so-called NSVZ β-function.
For the pure N = 1 SYM theory it gives the exact expression for the
β-function in the form of the geometric series.
In this talk it will be also argued that in N = 1 SYM theories the three-
point ghost-gauge vertices are �nite.
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NSVZ β-function in N = 1 supersymmetric theories

In N = 1 supersymmetric theories the β-function is related to the
anomalous dimension of the matter super�elds by the equation

β(α, λ) = −
α2
(

3C2 − T (R) + C(R)i
jγj

i(α, λ)/r
)

2π(1− C2α/2π)
, where

tr (TATB) ≡ T (R) δAB ; (TA)i
k(TA)k

j ≡ C(R)i
j ;

fACDfBCD ≡ C2δ
AB ; r ≡ δAA.

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, Nucl.Phys. B 277 (1986)
456; D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

The NSVZ β-function was obtained from di�erent arguments: instantons,
anomalies etc.
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NSVZ β-function and calculations in the lowest loops

The NSVZ β-function can be compared with the results of calculations in
the lowest orders of the perturbation theory. To make such calculations, a
theory should be regularized.
The dimensional regularization breaks the supersymmetry and is not
convenient for calculations in supersymmetric theories. That is why
supersymmetric theories are mostly regularized by the dimensional
reduction. However, the dimensional reduction is not self-consistent.

W.Siegel, Phys.Lett. B 84 (1979) 193; B 94 (1980) 37.

Removing of the inconsistencies leads to the loss of explicit supersymmetry:

L.V.Avdeev, G.A.Chochia, A.A.Vladimirov, Phys.Lett. B 105 (1981) 272.

As a consequence, supersymmetry can be broken by quantum corrections
in higher loops.

L.V.Avdeev, Phys.Lett. B 117 (1982) 317;
L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B 219 (1983) 262.
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NSVZ β-function and calculations in the lowest loops

Using the dimensional reduction and DR-scheme a β-function of N = 1
supersymmetric theories was calculated up to the four-loop approximation:

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356; I.Jack, D.R.T.Jones,
C.G.North, Phys.Lett. B 386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

The result coincides with the NSVZ β-function only in one- and two-loop
approximations. In the higher loops it is necessary to make a special tuning
of the coupling constant.
Thus, using of other regularizations is also interesting:

M.A.Shifman, A.I.Vainshtein, Sov.J.Nucl.Phys. 44 (1986) 321;
J.Mas, M.Perez-Victoria, C.Seijas, JHEP, 0203 (2002) 049.

Usually in supersymmetric theories other regularizations are used for
calculating a β-function only in one- and two-loop approximations.
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Higher covariant derivative regularization

The higher covariant derivative regularization is a consistent regularization,
which does not break supersymmetry.

A.A.Slavnov, Nucl.Phys., B 31 (1971) 301; Theor.Math.Phys. 13 (1972) 1064.

In order to regularize a theory by higher derivatives it is necessary to
add a term with higher degrees of covariant derivatives. Then divergences
remain only in the one-loop approximation. These remaining divergences
are regularized by inserting the Pauli�Villars determinants.

A.A.Slavnov, Theor.Math.Phys. 33 (1977) 977.

The higher covariant derivative regularization can be generalized to the
N = 1 supersymmetric case

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B 268 (1986) 113.

In this talk we will mostly discuss quantum corrections in SUSY theories
regularized by higher covariant derivatives.
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NSVZ β-function for N = 1 SQED with Nf �avors

The simplest particular case of the N = 1 SYM theory is the N = 1
supersymmetric electrodynamics (SQED) with Nf �avors, which (in the
massless case) is described by the action

S =
1

4e2
0

Re

∫
d4x d2θW aWa+

Nf∑
f=1

1

4

∫
d4x d4θ

(
φ∗fe

2V φf+φ̃∗fe
−2V φ̃f

)
,

where V is a real gauge super�eld, φf and φ̃f with f = 1, . . . , Nf are
chiral matter super�elds, and Wa = D̄2DaV/4. This case corresponds to

C2 = 0; C(R) = I; T (R) = 2Nf r = 1,

where I is the 2Nf × 2Nf unit matrix. Therefore, for N = 1 SQED with
Nf �avors the NSVZ β-function has the form

β(α) =
α2Nf
π

(
1− γ(α)

)
.

M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett. 42 (1985)
224; Phys.Lett. B 166 (1986) 334.
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N = 1 SQED with Nf �avors, regularized by higher derivatives

In order to regularize the theory by higher derivatives, it is necessary to
add the higher derivative term to the action:

Sreg =
1

4e2
0

Re

∫
d4x d2θW aR(∂2/Λ2)Wa

+

Nf∑
f=1

1

4

∫
d4x d4θ

(
φ∗fe

2V φf + φ̃∗fe
−2V φ̃f

)
,

where R(∂2/Λ2) is a regulator, e.g. R = 1 + ∂2n/Λ2n.
Adding the higher derivative term allows to remove all divergences beyond
the one-loop approximation. To remove one-loop divergences, we insert in
the generating functional the Pauli�Villars determinants:

Z[J ] =

∫
Dµ

∏
I

(
detPV (V,MI)

)Nf cI
exp

{
iSreg + iSgf + Sources

}
,

∑
I

cI = 1;
∑
I

cIM
2
I = 0; MI = aIΛ, where aI 6= aI(e0).

K.V.Stepanyantz Structure of quantum corrections in N = 1



15

Renormalization

Γ(2) =

∫
d4p

(2π)4
d4θ

(
− 1

16π
V (−p) ∂2Π1/2V (p) d−1(α0,Λ/p)

+
1

4

Nf∑
f=1

(
φ∗f (−p, θ)φf (p, θ) + φ̃∗f (−p, θ)φ̃f (p, θ)

)
G(α0,Λ/p)

)
.

where ∂2Π1/2 ≡ −DaD̄2Da/8 is a supersymmetric transversal projection
operator. The renormalized coupling constant α(α0,Λ/µ) is de�ned by
requiring that the inverse invariant charge d−1(α0(α,Λ/µ),Λ/p) is �nite
in the limit Λ→∞. The renormalization constant Z3 is de�ned by

1

α0
≡ Z3(α,Λ/µ)

α
.

The renormalization constant Z is constructed by requiring that the
renormalized two-point Green function ZG is �nite in the limit Λ→∞:

Gren(α, µ/p) = lim
Λ→∞

Z(α,Λ/µ)G(α0,Λ/p).
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The renormalization group functions

de�ned in terms of the bare coupling constant

In most original papers

V.Novikov, M.A.Shifman, A.Vainshtein, V.I.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.I.Vainshtein, V.I.Zakharov, JETP Lett.
42 (1985) 224; Phys.Lett. B 166 (1986) 334.

the NSVZ β-function was derived for the renormalization group functions
de�ned in terms of the bare coupling constant

β
(
α0(α,Λ/µ)

)
≡ dα0(α,Λ/µ)

d ln Λ

∣∣∣
α=const

;

γ
(
α0(α,Λ/µ)

)
≡ −d lnZ(α,Λ/µ)

d ln Λ

∣∣∣
α=const

These renormalization group functions
1. are scheme independent for a �xed regularization;
2. depend on the regularization;
2. in all loops satisfy the NSVZ relation in the case of N = 1 SQED with
Nf �avors, regularized by higher derivatives.
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The renormalization group functions

de�ned in terms of the bare coupling constant

The above RG functions do not depend on the renormalization prescription,
because they can be expressed via unrenormalized Green functions:

0 = lim
p→0

dd−1(α0,Λ/p)

d ln Λ

∣∣∣
α=const

= lim
p→0

(∂d−1(α0,Λ/p)

∂α0
β(α0)−∂d

−1(α0,Λ/p)

∂ ln p

)
where in the last equality α0 and p are considered as independent variables.
Similarly, di�erentiating

lnG(α0,Λ/q) = lnGren(α, µ/q)− lnZ(α,Λ/µ)

+(terms vanishing in the limit q → 0)

with respect to ln Λ at a �xed value of α, in the limit q → 0 we obtain

γ(α0) = lim
q→0

(∂ lnG(α0,Λ/q)

∂α0
β(α0)− ∂ lnG(α0,Λ/q)

∂ ln q

)
.

Therefore, β(α0) and γ(α0) do not depend on an arbitrariness of choosing
the renormalization constants.
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The NSVZ relation with the HD regularization

With the higher covariant derivative regularization loop integrals giving a
β-function de�ned in terms of the bare coupling constant are integrals of
total derivatives

A.Soloshenko, K.S., hep-th/0304083.

and even integrals of double total derivatives

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.

This allows to calculate one of the loop integrals analytically and to obtain
the NSVZ relation for the RG functions de�ned in terms of the bare
coupling constant. In the Abelian case this has been done in all loops

K.S., Nucl.Phys. B 852 (2011) 71; JHEP 1408 (2014) 096.

β(α0)

α2
0

=
d

d ln Λ

(
d−1(α0,Λ/p)− α−1

0

)∣∣∣
p=0

=
Nf
π

(
1− d

d ln Λ
lnG(α0,Λ/q)

∣∣∣
q=0

)
=
Nf
π

(
1− γ(α0)

)
.
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Three-loop calculation for N = 1 SQED

β(α0)

α2
0

= Nf
d

d ln Λ

{
2π
∑
I

cI

∫
d4q

(2π)4
∂

∂qµ
∂

∂qµ

ln(q2 +M2)

q2
+ 4π

∫
d4q

(2π)4
d4k

(2π)4
e2

k2R2
k

× ∂

∂qµ
∂

∂qµ

( 1

q2(k + q)2
−
∑
I

cI
1

(q2 +M2
I )((k + q)2 +M2

I )

)[
Rk
(

1 +
e2Nf
4π2

ln
Λ

µ

)
−2e2Nf

(∫ d4t

(2π)4
1

t2(k + t)2
−
∑
J

cJ

∫
d4t

(2π)4
1

(t2 +M2
J)((k + t)2 +M2

J)

)]
+4π

∫
d4q

(2π)4
d4k

(2π)4
d4l

(2π)4
e4

k2Rkl2Rl

∂

∂qµ
∂

∂qµ

{(
− 2k2

q2(q + k)2(q + l)2(q + k + l)2

+
2

q2(q + k)2(q + l)2

)
−
∑
I

cI
(
− 2(k2 +M2

I )

(q2 +M2
I )((q + k)2 +M2

I )((q + l)2 +M2
I )

× 1

((q + k + l)2 +M2
I )

+
2

(q2 +M2
I )((q + k)2 +M2

I )((q + l)2 +M2
I )
− 1

(q2 +M2
I )2

× 4M2
I

((q + k)2 +M2
I )((q + l)2 +M2

I )

)}
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Double total derivatives

The integrals of double total derivatives do not vanish due to singularities
of the integrand. This can be illustrated by a simple example∫

d4q

(2π)4

∂

∂qµ

(qµ
q4
f(q2)

)
= − 1

8π2
f(0),

where we assume that the function f(q2) has a su�ciently rapid fall-o� at
in�nity. The sum of singular contributions appears to be proportional to
the anomalous dimension.
Below we brie�y explain, how one can prove the factorization of integrals
de�ning the β-function into integrals of double total derivatives, following
the method proposed in

K.S., Nucl.Phys. B 852 (2011) 71.

It is convenient to use the background �eld method. In the Abelian case
it is introduced by making the replacement

V → V + V ,

where V is the background gauge super�eld.
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Main steps of the all-loop derivation

1. The integral over the matter super�eld is Gaussian and can be calculated
exactly:

exp
(
iΓ[V ]

)
=

∫
DV

m∏
I=0

Nf∏
f=1

det(?I,f )cI/2 exp
{
i
(
Sgauge +SΛ +Sgf

)}
,

where c0 = −1, M0 = 0 corresponds to usual super�elds in the
massless limit, and the operator ? encodes sequences of the vertices and
propagators.
Terms quadratic in the super�eld V in this expression have the form

∆Γ(2) = − i
2
N2
f

〈( m∑
I=0

cITr(VQJ0?)I

)2〉
1PI

+iNf

m∑
I=0

cI

〈
Tr(VQJ0 ?VQJ0?) + Tr(V2J0?)

〉
I,1PI

,

where QJ0 denotes the e�ective vertex and ? does not contain V .
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Graphical interpretation of the operator ?

The operator ? encodes sequences of vertices B and propagators P ,

The trace makes a circle from the matter line.
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Graphical interpretation of angular brackets

Angular brackets denote the functional integration,

〈A[V ]〉 ≡

∫
DV A[V ]

m∏
I=0

Nf∏
f=1

det(?I)
cI/2 exp

{
i
(
Sgauge + SΛ + Sgf

)}
∫
DV

m∏
I=0

Nf∏
f=1

det(?I)
cI/2 exp

{
i
(
Sgauge + SΛ + Sgf

)} .

The angular brackets make propagators of the quantum gauge super�elds
V from V -s inside the operator ?.

Thus, non-trivial contributions to the e�ective action can appear from the
following e�ective diagrams:
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Main steps of the all-loop derivation

2. The β-function de�ned in terms of the bare coupling constant can be
obtained from ∆Γ(2) by the substitution

V (x, θ)→ θ4,

after which

1

2π
V4·

β(α0)

α2
0

=
1

2π
V4·

d

d ln Λ

(
d−1(α0,Λ/p)−α0

)∣∣∣
p→0

=
d(∆Γ(2))

d ln Λ

∣∣∣
V =θ4

,

where V4 is the (properly regularized) space-time volume.
After the above substitution we present the expression given earlier in the
form of an integral of a double total derivative.
In the coordinate representation the integral of a total derivative is given
by the expression

Tr
(

[xµ, Something]
)

= 0.
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Main steps of the all-loop derivation

3. Diagrams in which the external lines are attached to di�erent matter
loops
After some algebraic transformations the corresponding contribution can
be presented in the form

− i
2
N2
f

〈( m∑
I=0

cITr(VQJ0?)I

)2〉
1PI

∣∣∣
V =θ4

=
i

2
N2
f

〈( m∑
I=0

cI Tr θ̄
ȧ(γν)ȧ

bθb Q̃ [y∗ν , ln(?I)]
)2〉

= 0,

where y∗µ = xµ − iθ̄ȧ(γµ)ȧ
bθb.

From this expression we see that the considered contribution is given by
an integral of a double total derivative . It vanishes, because the integrand
does not contain singularities.
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Main steps of the all-loop derivation

4. The main (non-singlet) contribution
Similarly, the non-singlet contribution (which corresponds to diagrams in
which external lines are attached to a single loop of the matter super�elds)
can be written as

i
d

d ln Λ
Nf

m∑
I=0

cI

〈
Tr(VQJ0 ?VQJ0?)

〉
I

∣∣∣
V =θ4

= One-loop result− i

2
Nf

d

d ln Λ

m∑
I=0

cI Tr
〈
θ4
[
y∗µ,
[
(yµ)∗, ln(?)

]]〉
I

−singular terms containing δ-functions,

Thus, the sum of the considered diagrams is an integral of a double total
derivative. However, the result does not vanish due to singularities of the
integrand:

[xµ,
∂µ
∂4

] = [−i ∂

∂Pµ
,− iP

µ

P 4
] = −2π2δ4(P ) = −2π2iδ4(p).
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Main steps of the all-loop derivation

5. The sum of singularities
Evidently, singular contributions can be present only in the massless case.
Therefore, there are no singularities for the Pauli�Villars super�elds.
Singularities proportional to δ-functions lead to cutting the diagrams
(without external legs). As a result we obtain graphs corresponding to
the two-point Green function of the matter super�elds

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.

- + + . . .

It is possible to relate the sum of singularities with the two-point Green
function of the matter super�elds.
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Main steps of the all-loop derivation

6. The result
After summing singularities and adding the one-loop result we obtain

d∆Γ(2)

d ln Λ

∣∣∣
V =θ4

=
Nf
2π2
V4 ·

(
1− d lnG

d ln Λ

∣∣∣
q=0

)
.

The expression

d lnG

d ln Λ

∣∣∣
q=0

=
d

d ln Λ

(
ln(ZG)− lnZ

)∣∣∣
q=0

= −d lnZ

d ln Λ
= γ(α0)

is the anomalous dimension (de�ned in terms of the bare coupling
constant). Therefore, the �nal exact expression for the β-function de�ned
in terms of the bare coupling constant for the considered theory has the
form

β(α0)

α2
0

=
Nf
π

(
1− γ(α0)

)
.
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Derivation of the NSVZ β-function in the Abelian case by summing

supergraphs

Qualitative picture:

A.V.Smilga, A.I.Vainshtein, Nucl.Phys. B 704 (2005) 445.
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The RG functions de�ned in terms of the renormalized coupling constant

RG functions de�ned in terms of the bare coupling constant are scheme
independent for a �xed regularization. However, RG functions are usually
de�ned by a di�erent way, in terms of the renormalized coupling constant,

β̃
(
α(α0,Λ/µ)

)
≡ dα(α0,Λ/µ)

d lnµ

∣∣∣
α0=const

;

γ̃
(
α(α0,Λ/µ)

)
≡ d lnZ(α(α0,Λ/µ),Λ/µ)

d lnµ

∣∣∣
α0=const

.

These RG functions are scheme-dependent. They coincide with the RG
functions de�ned in terms of the bare coupling constant, if the boundary
conditions

Z3(α, x0) = 1; Z(α, x0) = 1

are imposed on the renormalization constants, where x0 is an arbitrary
�xed value of ln Λ/µ.

A.L.Kataev and K.S., Nucl.Phys. B 875 (2013) 459; Phys.Lett. B 730 (2014)
184; Theor.Math.Phys. 181 (2014) 1531.
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The NSVZ-scheme with the higher derivatives in the Abelian case

γ̃ (α(α0, x)) = −d lnZ (α(α0, x), x)

dx

= −∂ lnZ(α, x)

∂α
· ∂α(α0, x)

∂x
− ∂ lnZ (α(α0, x), x)

∂x
,

where the total derivative with respect to x = ln Λ/µ also acts on x
inside α. Calculating these expressions at the point x = x0 and taking into
account that ∂ lnZ(α, x0)/∂α = 0 we obtain

γ̃(α0) = γ(α0).

The equality for the β-functions can be proved similarly.
The RG functions β̃ and γ̃ (de�ned in terms of the renormalized coupling
constant) are scheme-dependent. They satisfy the NSVZ relation only in
a certain subtraction scheme, called the NSVZ scheme, which is evidently
�xed in all loops by the boundary conditions

(Z3)NSVZ(αNSVZ, x0) = 1; ZNSVZ(αNSVZ, x0) = 1,

if the theory is regularized by higher derivatives.
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The scheme dependence in the three-loop approximation

The (three-loop) renormalized coupling constant for N = 1 SQED can be
calculated in the case Rk = 1 + k2n/Λ2n:

1

α0
=

1

α
− Nf

π

(
ln

Λ

µ
+ b1

)
− αNf

π2

(
ln

Λ

µ
+ b2

)
− α2Nf

π3

(Nf
2

ln2 Λ

µ

− ln
Λ

µ

(
Nf

n∑
I=1

cI ln aI +Nf +
1

2
−Nfb1

)
+ b3

)
+O(α3),

where bi are arbitrary �nite constants.
Similarly, the renormalization constant Z (in the two-loop approximation)
for the matter super�elds is not also uniquely de�ned:

Z = 1 +
α

π

(
ln

Λ

µ
+ g1

)
+
α2(Nf + 1)

2π2
ln2 Λ

µ

−α
2

π2
ln

Λ

µ

(
Nf

n∑
I=1

cI ln aI −Nfb1 +Nf +
1

2
− g1

)
+
α2g2

π2
+O(α3),

where gi are other arbitrary �nite constants.
The subtraction scheme is �xed by values of the constants bi and gi.
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The scheme dependence in the three-loop approximation

The RG functions de�ned in terms of the bare coupling constant are

β(α0)

α2
0

=
Nf
π

+
α0Nf
π2

− α2
0Nf
π3

(
Nf

n∑
I=1

cI ln aI +Nf +
1

2

)
+O(α3

0);

γ(α0) = −α0

π
+
α2

0

π2

(
Nf

n∑
I=1

cI ln aI +Nf +
1

2

)
+O(α3

0).

They do not depend on the �nite constants bi and gi (i.e. they are scheme-
independent) and satisfy the NSVZ relation.
The RG functions de�ned in terms of the renormalized coupling constant
are

β̃(α)

α2
=
Nf
π

+
αNf
π2
− α2Nf

π3

(
Nf

n∑
I=1

cI ln aI +Nf +
1

2
+Nf (b2 − b1)

)
+O(α3)

γ̃(α) = −α
π

+
α2

π2

(
Nf +

1

2
+Nf

n∑
I=1

cI ln aI −Nfb1 +Nfg1

)
+O(α3)

and depend on a subtraction scheme.
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The NSVZ scheme in the three-loop approximation

The NSVZ scheme is determined by the conditions

α0(αNSVZ, x0) = αNSVZ; ZNSVZ(αNSVZ, x0) = 1

For simplicity we set g1 = 0 (this constant can be excluded by a rede�nition
of µ). In this case x0 = 0 and the above conditions (for the NSVZ scheme)
give

g2 = b1 = b2 = b3 = 0.

In this case in the considered approximations

β̃(α)

α2
=
Nf
π

+
αNf
π2
− α2Nf

π3

(
Nf

n∑
I=1

cI ln aI +Nf +
1

2

)
+O(α3) =

β(α)

α2
;

γ̃(α) =
dlnZ

d lnµ
= −α

π
+
α2

π2

(
Nf +

1

2
+Nf

n∑
I=1

cI ln aI

)
+O(α3) = γ(α).

Consequently, in this scheme the NSVZ relation is satis�ed.
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RG function for N = 1 SQED in di�erent subtraction schemes

NSVZ-scheme with the higher derivatives

γ̃NSVZ(α) = −α
π

+
α2

π2

(1

2
+Nf

n∑
I=1

cI ln aI +Nf

)
+O(α3);

β̃NSVZ(α) =
α2Nf
π

(
1 +

α

π
− α2

π2

(1

2
+Nf

n∑
I=1

cI ln aI +Nf

)
+O(α3)

)
.

MOM-scheme (The results with the dimensional reduction and with the
higher derivative regularization coincide.)

γ̃MOM(α) = −α
π

+
α2(1 +Nf )

2π2
+O(α3);

β̃MOM(α) =
α2Nf
π

(
1 +

α

π
− α2

2π2

(
1 + 3Nf (1− ζ(3))

)
+O(α3)

)
.

DR-scheme

γ̃DR(α) = −α
π

+
α2(2 + 2Nf )

4π2
+O(α3);

β̃DR(α) =
α2Nf
π

(
1 +

α

π
− α2(2 + 3Nf )

4π2
+O(α3)

)
.
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The NSVZ relation and the dimensional reduction

In the DR-scheme the NSVZ relation is not valid starting from the three-
loop approximation

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356; I.Jack, D.R.T.Jones,
C.G.North, Phys.Lett. B 386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

due to the scheme-dependence.
Why the higher derivative regularization naturally gives NSVZ and the
dimensional reduction does not?
In the above derivation we essentially use the possibility to take the limit
p→ 0. This follows from the fact that the higher derivative terms and the
derivative with respect to ln Λ make the integrals in this limit well-de�ned.
In the case of using the dimensional reduction the limit p→ 0 is not well-
de�ned. However, it is possible to make calculations similar to the case of
using the higher derivative regularization

S.S.Aleshin, A.L.Kataev, K.S., JETP Lett. 103 (2016) 77; S.S.Aleshin, I.O.Goriachuk,
A.L.Kataev, K.S., Phys.Lett. B764 (2017) 222.
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The NSVZ relation and the dimensional reduction

With the dimensional reduction in the three loop approximation

d−1(α0,Λ/p, ε)− α−1
0 = 8πNfΛε

∫
ddq

(2π)d
1

q2(q + p)2

−8πNfΛε
ε

1− ε

∫
ddq

(2π)d
1

q2(q + p)2
(lnG(α0, q/Λ, ε))1-loop

−8πNfΛε
2ε

1− 3ε/2

∫
ddq

(2π)d
1

q2(q + p)2
(lnG(α0, q/Λ, ε))2-loop,Nf

+�nite terms +O(α2
0Nf ) +O(α3

0),

Then the boundary conditions analogous to the case of HD (at the three-
loop level) are

lim
ε→∞

α0(α′, ε, x0 = 0) = α′−α
′3Nf
4π2

+O(α′4); lim
ε→∞

Z ′(α′, ε, x0 = 0) = 1.

They are equivalent to the coupling constant rede�nition (α′ ∼ NSVZ and
α ∼ DR)

α′ = α+
α3Nf
4π2

+O(α4).
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Renormalization of the photino mass in softly broken N = 1 SQED

The integrals de�ning the anomalous dimension of the photino mass

γm(α0) ≡ d lnm0

d ln Λ

in softly broken N = 1 SQED regularized by higher derivatives are also integrals
of double total derivatives in all loops.

I.V.Nartsev, K.S., JHEP 1704 (2017) 047; JETP Lett. 105 (2017) 69.

This can be proved by the generalization of the method described above and
leads to the NSVZ-like relation

γm(α0) =
α0Nf
π

[
1− d

dα0

(
α0γ(α0)

)]
.

J.Hisano, M.A.Shifman, Phys.Rev. D56 (1997) 5475;
I.Jack, D.R.T.Jones, Phys.Lett. B415 (1997) 383;
L.V.Avdeev, D.I.Kazakov, I.N.Kondrashuk, Nucl.Phys. B510 (1998) 289.

The NSVZ-like scheme (for the RG functions de�ned in terms of the renormalized
coupling constant) in this case is de�ned by the conditions

Z3(α, x0) = 1; Z(α, x0) = 1; Zm(α, x0) = 1.

K.V.Stepanyantz Structure of quantum corrections in N = 1



39

Simple non-Abelian example: exact expression for the Adler D-function in

N = 1 SQCD

M.A.Shifman and K.S., Phys.Rev.Lett. 114 (2015) 051601; Phys.Rev. D 91 (2015) 105008.

Let us consider N = 1 SQCD interacting with the Abelian gauge �eld.
This theory is described by the action

S =
1

2g2
0

tr Re

∫
d4x d2θW aWa +

1

4e2
0

Re

∫
d4x d2θW aW a

+

Nf∑
f=1

[
1

4

∫
d4x d4θ

(
φ+
f e

2qfV +2V φf + φ̃+
f e
−2qfV −2V t φ̃f

)

+
(1

2

∫
d4x d2θm0f φ̃

t
fφf + c.c.

)]
.

We assume that the gauge group is SU(Nc), and matter super�elds belong
to the (anti)fundamental representation.
This theory is a supersymmetric generalization of QCD, in which one takes
into account interaction of quarks with the electromagnetic �eld.
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Notations

V is the non-Abelian SU(Nc) gauge super�eld (gluons + superpartners)
V is the Abelian U(1) gauge super�eld (photon + superpartner)

φf and φ̃f are the chiral matter super�elds with the charges qfe and
−qfe with respect to the group U(1), respectively (right and left quarks
+ superpartners).
The strength of the non-Abelian gauge super�eld is denoted by

Wa ≡
1

8
D̄2(e−2VDae

2V ),

and the strendgth of the Abelian gauge super�eld is

W a =
1

4
D̄2DaV .

The considered theory contains two coupling constants:

αs =
g2

4π
and α =

e2

4π
.
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The Adler D-function

We consider quantum corrections to the electromagnetic coupling contant
α, which appear due to the quark loop with internal gluon and quark lines.
The diagrams containing internal photon lines are omitted. (Thus, the
electromagnetic �eld V is considered as an external �eld.)
Due to the Ward identity the two-point Green function of the super�eld
V is transversal:

∆Γ(2) = − 1

16π

∫
d4p

(2π)4
d4θV ∂2Π1/2V

(
d−1(α0, α0s,Λ/p)− α−1

0

)
.

We calculate the Adler function, which is de�ned in terms of the bare
coupling constant by the equation

D(α0s) =
3π

2

d

d ln Λ

(
d−1(α0, α0s,Λ/p)− α−1

0

)∣∣∣
p=0

=
3π

2α2
0

dα0

d ln Λ
.

Thus, it depends on regularization, but is independent of a subtraction
scheme.
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The higher covariant derivative regularization

We add to the action the higher derivative term, e.g.,

SΛ =
1

2g2
0

tr Re

∫
d4x d2θ (eΩW ae−Ω)

[
R
(
− ∇̄

2∇2

16Λ2

)
− 1
]
(eΩWae

−Ω).

The covariant derivatives have the form

∇a = e−Ω+

Dae
Ω+

; ∇̄ȧ = eΩD̄ȧe
−Ω, where e2V = eΩ+

eΩ,

Λ is a dimensionful parameter, andR−1 is a regulator, such asR(0)−1 = 0
and R(x)→∞ for x→∞, for example, R(x) = 1 + xn.
Remaining one-loop (sub)divergences are regularized by inserting the
Pauli�Villars determinants into the generating functional:

Γ[V ] = −i ln

∫
DVDΦDΦ̃

m∏
I=1

det(V,V ,MI)
cI exp

(
i(S+SΛ+Sgf+Sghosts)

)
,

where MI = aIΛ and aI do not depend on α0s.
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Exact expression for the Adler function

It is possible to derive the following NSVZ-like exact expression for the
Adler function for the considered theory

D(α0s) =
3

2

∑
f

q2
f ·Nc

(
1− γ(α0s)

)
.

Note that, in general, the Adler D-function consists of two contributions

D(α0s) =
∑
f

q2
f D1(α0s) +

(∑
f

qf

)2

D2(α0s),

which correspond to two di�erent types of diagrams:
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Non-Abelian N = 1 supersymmetric gauge theories

Investigation of non-Abelian N = 1 SYM theories with matter is much
more complicated. Let us consider the theory

S =
1

2e2
0

Re tr

∫
d4x d2θW aWa +

1

4

∫
d4x d4θ φ∗i(e2V )i

jφj

+
{∫

d4x d2θ
(1

4
mij

0 φiφj +
1

6
λijk0 φiφjφk

)
+ c.c.

}
,

where matter super�elds belong to a representation R of the gauge group,
and Yukawa couplings λ0 satisfy the condition

λijm0 (TA)m
k + λimk0 (TA)m

j + λmjk0 (TA)m
i = 0.

It is invariant under the gauge transformations

φ→ eAφ; e2V → e−A
+

e2V e−A,

where the parameter A is an arbitrary chiral super�eld.
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The background �eld method, regularization, and gauge �xing

Quantum-background splitting is made by the substitution

e2V → eΩ
+

e2V eΩ.

The background super�eld V is de�ned by e2V = eΩ
+

eΩ.
We choose the following higher derivative term

SΛ =
1

2e2
0

Re tr

∫
d4x d2θ eΩeΩW ae−Ωe−Ω

[
R
(
− ∇̄

2∇2

16Λ2

)
− 1
]
Adj

×eΩeΩWae
−Ωe−Ω +

1

4

∫
d4x d4θ φ+eΩ

+

eΩ+
[
F
(
− ∇̄

2∇2

16Λ2

)
− 1
]
eΩeΩφ,

and the gauge �xing term

Sgf =
1

e2
0

tr

∫
d4x d4θ

(
16ξ0 f

+
[
eΩ

+

K−1
(
− ∇̄2∇2

16Λ2

)
eΩ
]
Adj

f

+eΩfe−Ω∇2V + e−Ω
+

f+eΩ
+

∇̄2V
)
,

where the regulators R, F , and K have a rapid growth at in�nity.
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Ghost Lagrangian and BRST invariance

Actions for the Faddeev�Popov and Nielsen�Kallosh ghosts have the form

SFP =
1

e2
0

tr

∫
d4x d4θ

(
eΩc̄e−Ω + e−Ω

+

c̄+eΩ
+
)

×
{( V

1− e2V

)
Adj

(
e−Ω

+

c+eΩ
+
)

+
( V

1− e−2V

)
Adj

(
eΩce−Ω

)}
;

SNK =
1

2e2
0

tr

∫
d4x d4θ b+

[
eΩ

+

K
(
− ∇̄2∇2

16Λ2

)
eΩ
]
Adj

b.

The total action of the gauge �xed theory is invariant under the BRST
transformations

δV = −ε
{( V

1− e2V

)
Adj

(
e−Ω

+

c+eΩ
+
)

+
( V

1− e−2V

)
Adj

(
eΩce−Ω

)}
;

δφ = εcφ; δc̄ = εD̄2(e−2V f+e2V ); δc̄+ = εD2(e2V fe−2V );

δc = εc2; δc+ = ε(c+)2; δf = 0; δb = 0; δΩ = 0,

where ε is an anticommuting scalar parameter.
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Renormalization

In our notation the renormalization constants are de�ned by the equations

1

α0
=
Zα
α

;
1

ξ0
=
Zξ
ξ

; V = VR; V = ZV Z
−1/2
α VR;

b =
√
ZbbR; c̄c = ZcZ

−1
α c̄RcR; φi = (

√
Zφ)i

j(φR)j ;

mij = mmn
0 (Zm)m

i(Zm)n
j ; λijk = λmnp0 (Zλ)m

i(Zλ)n
j(Zλ)p

k.

The subscript R denotes renormalized super�elds, α, λ, and ξ are the
renormalized coupling constant, the Yukawa couplings, and the gauge
parameter, respectively; m denotes renormalized masses.
It is possible to impose the following constrains to these renormalization
constants:

(Zm)i
j = (Zλ)i

j = (
√
Zφ)i

j ; Zξ = Z−2
V ; Zb = Z−1

α .
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Non-renormalization of the vertices with two ghost legs and one leg of the

quantum gauge super�eld

We will prove that the three-point vertices with two ghost legs and a single
leg of the quantum gauge super�eld are �nite in all orders.

K.S., Nucl.Phys. B909 (2016) 316.

There are 4 such vertices, c̄ V c, c̄+V c, c̄ V c+, and c̄+V c+.
They have the same renormalization constant Z

−1/2
α ZcZV . Therefore, the

above statement can be rewritten as

d

d ln Λ
(Z−1/2

α ZcZV ) = 0.

In the one-loop approximation this has �rst been noted in the paper

S.S.Aleshin, A.E.Kazantsev, M.B.Skopsov, K.S., JHEP 1605 (2016) 014.

Consequently, there is a subtraction scheme in which

−1

2
lnZα + lnZc + lnZV = 0.

Important: Below we will demonstrate that Zc is divergent. Therefore, The
Green functions of the structure c̄ V nc are divergent for n 6= 1.
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Slavnov�Taylor identities

The Slavnov�Taylor identity can be derived by making the substitution
coinciding with the BRST transformations in the generating functional
and is written as

0 =

∫
d4x d4θx

δΓ

δV Ax

〈
δV Ax

〉
+

∫
d4x d2θx

( 〈
δc̄Ax
〉 δΓ
δc̄Ax

+
〈
δcAx
〉 δΓ
δcAx

+ 〈δφi〉
δΓ

δφi

)
+

∫
d4x d2θ̄x

( 〈
δc̄∗Ax

〉 δΓ

δc̄∗Ax
+
〈
δc∗Ax

〉 δΓ

δc∗Ax
+
〈
δφ∗i

〉 δΓ

δφ∗i

)
,

where we keep the ε-dependence.
Also we will use the identity obtained by making the substitution c̄→ c̄+a,
where a is an arbitrary chiral super�eld:

ε
δΓ

δc̄Ax
=

1

4
D̄2
〈
δV Ax

〉
; ε

δΓ

δc̄∗Ax
=

1

4
D2
〈
δV Ax

〉
,

where, for simplicity, the background super�eld is set to 0.
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Slavnov�Taylor identities for the three-point functions

Let us di�erentiate the Slavnov�Taylor identity with respect to c̄∗By , cCz ,

and cDw , set the �elds to 0, and use the equations

δ2Γ

δc̄∗By δcAx
= −

D2
yD̄

2
x

16
Gcδ

8
xyδAB ;

δ

δcAx

〈
δV By

〉
= −ε · 1

4
Gc D̄

2δ8
xyδAB .

As a result we obtain the identity

ε ·Gc(∂2
w/Λ

2)D̄2
w

δ3Γ

δc̄∗By δV Dw δcCz
− ε ·Gc(∂2

z/Λ
2)D̄2

z

δ3Γ

δc̄∗By δV Cz δc
D
w

+
1

2
Gc
(
∂2
y/Λ

2
)
D2
y

δ2

δcCz δc
D
w

〈
δcBy

〉
= 0.

Similarly, di�erentiating with respect to c̄∗By , c∗Cz , and cDw gives

ε ·Gc(∂2
w/Λ

2)D̄2
w

δ3Γ

δc̄∗By δV Dw δc∗Cz
+ ε ·Gc(∂2

z/Λ
2)D2

z

δ3Γ

δc̄∗By δV Cz δc
D
w

+
1

2
Gc
(
∂2
y/Λ

2
)
D2
y

δ2

δc∗Cz δcDw

〈
δcBy

〉
= 0.
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Explicit expressions for the three-point ghost-gauge functions

To simplify these identities we use explicit expressions for the
Green functions. They can be derived using dimensional and chirality
considerations:

δ3Γ

δc̄∗Ax δV By δc
C
z

= − ie0

16
fABC

∫
d4p

(2π)4

d4q

(2π)4

(
f(p, q)∂2Π1/2

−Fµ(p, q)(γµ)ȧ
bD̄ȧDb + F (p, q)

)
y

(
D2
xδ

8
xy(q + p) D̄2

zδ
8
yz(q)

)
;

δ3Γ

δc̄∗Ax δV By δc
∗C
z

= − ie0

16
fABC

∫
d4p

(2π)4

d4q

(2π)4
F̃ (p, q)D2

xδ
8
xy(q + p)D2

zδ
8
yz(q),

where ∂2Π1/2 ≡ −DaD̄2Da/8 is the supersymmetric projection operator,
and

δ8
xy(p) ≡ δ4(θx − θy)eipα(xα−yα).

This implies that q + p is the momentum of c̄∗, −p is the momentum of
V , and −q is the momentum of c (or c∗).
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Explicit expressions for the ghost correlator

Let us introduce the chiral source J and add the term

−e0

2

∫
d4x d2θ fABCJ AcBcC + c.c.

to the action. From dimensional and chirality considerations we obtain

δ2

δcCz δc
D
w

〈
δcBy

〉
= −iε · δ3Γ

δcCz δc
D
w δJ By

= − ie0ε

4
fBCD

∫
d4p

(2π)4

d4q

(2π)4
H(p, q)D̄2

zδ
8
zy(q + p)D̄2

wδ
8
yw(q);

where [H(p, q)] = 1, and, by construction,

H(p, q) = H(p,−q − p).

Substituting explicit expressions for the Green functions into the �rst
Slavnov�Taylor identity, we can rewrite it in the form

Gc(q)F (q, p) +Gc(p)F (p, q) = 2Gc(q + p)H(−q − p, q);
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Finiteness of the function H

First, let us prove that the function H(p, q) is �nite. H is contributed by
diagrams in which one leg corresponds to the chiral source J and two
other legs correspond to chiral ghost super�elds c. These diagrams contain∫
d4y d2θy J Ay ·

D̄2
yD

2
y

4∂2
δ8
y1·
D̄2
yD

2
y

4∂2
δ8
y2 = −2

∫
d4y d4θy J Ay ·

D2
y

4∂2
δ8
y1·
D̄2
yD

2
y

4∂2
δ8
y2.

Therefore, the considered contribution can be presented as an integral
over the total superspace, which includes integration over∫

d4θ = −1

2

∫
d2θD̄2 + total derivatives in the coordinate space .

This implies that two left spinor derivatives should act to the chiral
external lines. Therefore, the non-vanishing result can be obtained only
if two right spinor derivatives also act to the external lines. Consequently,
the result should be proportional to, at least, the second degree of the
external momenta and is �nite in the ultraviolet region.
Thus, the function H(p, q) is UV �nite.
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Non-renormalization of the three-point ghost-gauge vertices

Let us multiply the Slavnov�Taylor identity to the renormalization constant
Zc (such that (Gc)R = ZcG is �nite), di�erentiate the result with respect
to ln Λ, and take the limit Λ→∞. Due to �niteness of (Gc)R and H the
result is written as(

(Gc)R(q)
d

d ln Λ
F (q, p) + (Gc)R(p)

d

d ln Λ
F (p, q)

)∣∣∣
Λ→∞

= 0.

Setting p = −q, we obtain

d

d ln Λ
F (−q, q)

∣∣∣
Λ→∞

= 0.

Therefore, the corresponding renormalization constant is �nite

d

d ln Λ
(Z−1/2

α ZcZV ) = 0.

Thus, the function F (p, q) is also �nite. This implies that all three-point
ghost-gauge vertices are �nite.
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One-loop calculation: two-point ghost Green function

In the Euclidean space after the Wick rotation

Gc(p) = 1 + e2
0C2

∫
d4k

(2π)4

( ξ0
Kk
− 1

Rk

)(
− 1

6k4
+

1

2k2(k + p)2

− p2

2k4(k + p)2

)
+O(e4

0, e
2
0λ

2
0),

where Rk ≡ R(k2/Λ) and Kk ≡ K(k2/Λ2).
We see that this function is divergent in the ultraviolet region (at in�nite
Λ).

γc(α0, λ0) =
d lnGc
d ln Λ

∣∣∣∣
p=0;α,λ=const

= −α0C2(1− ξ0)

6π
+O(α2

0, α0λ
2
0).
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One-loop calculation: three-point gauge-ghost Green functions

ie0

4
fABC

∫
d4θ

d4p

(2π)4

d4q

(2π)4
c̄∗A(θ, p+ q)

(
f(p, q)∂2Π1/2V

B(θ,−p)

+Fµ(p, q)(γµ)ȧ
bDbD̄

ȧV B(θ,−p) + F (p, q)V B(θ,−p)
)
cC(θ,−q);

ie0

4
fABC

∫
d4θ

d4p

(2π)4

d4q

(2π)4
c̄∗A(θ, p+ q)F̃ (p, q)V B(θ,−p)c∗C(θ,−q).
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One-loop calculation: the functions F and F̃

Calculating these diagrams gives

F (p, q) = 1 +
e20C2

4

∫
d4k

(2π)4

{
− (q + p)2

Rkk2(k + p)2(k − q)2 −
ξ0 p

2

Kkk2(k + q)2(k + q + p)2

+
ξ0 q

2

Kkk2(k + p)2(k + q + p)2
+

(
ξ0
Kk
− 1

Rk

)(
− 2(q + p)2

k4(k + q + p)2
+

2

k2(k + q + p)2

− 1

k2(k + q)2
− 1

k2(k + p)2

)}
+O(α2

0, α0λ
2
0).

F̃ (p, q) = 1− e20C2

4

∫
d4k

(2π)4

{ p2

Rkk2(k + q)2(k + q + p)2
+

ξ0 (q + p)2

Kkk2(k − p)2(k + q)2

+
ξ0 q

2

Kkk2(k + p)2(k + q + p)2
+

2ξ0
Kkk2(k + p)2

− 2ξ0
Kkk2(k + q + p)2

+

(
ξ0
Kk
− 1

Rk

)
×
(

2q2

k4(k + q)2
+

1

k2(k + q + p)2
− 1

k2(k + q)2

)}
+O(α2

0, α0λ
2
0).

We see that these expressions are �nite in the ultraviolet region.
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One-loop calculation: the function f

The expressions for the functions f and Fµ are very large and in writing
them we will use the notation

∆q ≡
ξ0
Kq
− 1

Rq
.

The function f has the form

f(p, q) =
1

4

∫
d4k

(2π)4
e20C2

k2(k + q)2(k + q + p)2

{ 2kµqµ
(k + q)2

∆k+q +
2k2

(k + q + p)2
∆k+q+p

+Rp
( 2kµ(q + p)µ

(k + q + p)2Rk+q
∆k+q+p +

2k2

(k + q)2Rk+q+p
∆k+q +

(kµ(k + q + p)µ

(k + q + p)2

+
kµ(k + q)µ

(k + q)2

)
∆k+q∆k+q+p

)
− 2kµ(k + q)µ

Rk+qRk+q+p
· Rk+q+p −Rk+q

(k + q + p)2 − (k + q)2

− 2(Rk+q+p −Rp)
(k + q + p)2 − p2 ·

1

Rk+q+p

(kµqµ(k + q + p)2 − kµqµp2

(k + q)2
∆k+q +

kµp
µ

Rk+q

)
−2(Rk+q −Rp)

(k + q)2 − p2 ·
1

Rk+q

(k2(k + q)2 − k2p2

(k + q + p)2
∆k+q+p +

kµ(k + q)µ

Rk+q+p

)}
+O(e40, e

2
0λ

2
0).
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One-loop calculation: the function Fµ

Fµ(p, q) =
1

16

∫
d4k

(2π)4
e20C2

k2(k + q)2(k + q + p)2

{ 2

k2
∆k

[
(q + p)µ kα(k + q)α + qµ kα

×(k + q + p)α + kµ
(
k2 − q2 − qαpα

)]
− 4kµ
Rk+q

+
2

(k + q)2
∆k+q

[
− qµkαpα + pµk

2

+kµqαp
α − kµ(k + q)2 + kαq

α(2q + 2k + p)µ
]

+
2

(k + q + p)2
∆k+q+p

[
qµkα(q + p)α

+(q + p)µkαq
α − kµ(q2 + qαp

α + k2)− pµk2
]
− Rk+q+p −Rk+q

(k + q + p)2 − (k + q)2
(2q + 2k + p)µ

× 4kαqα
Rk+qRk+q+p

+
2Rp

(k + q)2(k + q + p)2
∆k+q+p∆k+q

[
(pµp

ν − δνµp2)
(

(k2 + q2)(kν + qν)

−(k + q)2qν
)

+ p2(qµkαp
α − kµqαpα)

]
+

4Rp
(k + q)2Rk+q+p

∆k+q (qµkαp
α − kµqαpα)

+
4(Rk+q −Rp)
(k + q)2 − p2

(kµqαp
α − qµkαpα)

Rk+qRk+q+p
+

4(Rk+q+p −Rp)
(k + q + p)2 − p2

( (pµp
ν − δνµp2)kν

Rk+q+pRk+q
+ ∆k+q

×
(
(k + q + p)2 − p2

)
(k + q)2Rk+q+p

(
qµkαp

α − kµqαpα
))}

+O(e40, e
2
0λ

2
0).
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One-loop calculation: �niteness of the function H

H(p, q) = 1− e2
0C2

4

∫
d4k

(2π)4

{
p2

Rkk2(k + q)2(k + q + p)2

+
(q + p)2

k4(k + q + p)2

( ξ0
Kk
− 1

Rk

)
+

q2

k4(k + q)2

( ξ0
Kk
− 1

Rk

)}
+O(e4

0, e
2
0λ

2
0);

H̃(p, q) =
e2

0C2

4

∫
d4k

(2π)4

1

Kkk2(k + q)2(k + q + p)2
+O(e4

0, e
2
0λ

2
0).

We see that the functionH is �nite in the ultraviolet region and is quadratic
in external momenta.
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Renormalization group functions de�ned in terms of the bare couplings

We will de�ne the RG functions in terms of the bare couplings by the
equations

β(α0, λ0) ≡ dα0

d ln Λ
;

(γφ)i
j(α0, λ0) ≡ −d ln(Zφ)i

j(α, λ,Λ/µ)

d ln Λ
;

γV (α0, λ0) ≡ −d lnZV (α, λ,Λ/µ)

d ln Λ
;

γc(α0, λ0) ≡ −d lnZc(α, λ,Λ/µ)

d ln Λ
.

where the di�erentiation is made at �xed values of α and λijk.
There renormalization group functions are
1. scheme independent at a �xed regularization;
2. depend on a regularization;
2. satisfy the NSVZ relation in all orders for N = 1 SQED with Nf �avors,
regularized by higher derivatives.
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New form of the NSVZ β-function

The NSVZ β-function can be equivalently rewritten in the form

β(α0, λ0)

α2
0

= −3C2 − T (R) + C(R)i
j(γφ)j

i(α0, λ0)/r

2π
+
C2

2π
· β(α0, λ0)

α0
.

Let us express the β-function in the right hand side in terms of the
renormalization constant Zα:

β(α0, λ0) =
dα0(α, λ,Λ/µ)

d ln Λ

∣∣∣
α,λ=const

= −α0
d lnZα
d ln Λ

∣∣∣
α,λ=const

.

Then, using the identity d(Z
−1/2
α ZV Zc)/d ln Λ = 0 we obtain

β(α0, λ0) = −2α0
d ln(ZcZV )

d ln Λ

∣∣∣
α,λ=const

= 2α0

(
γc(α0, λ0)+γV (α0, λ0)

)
,

where γc and γV are anomalous dimensions of the Faddeev�Popov ghosts
and of the quantum gauge super�eld (de�ned in terms of the bare coupling
constants), respectively.
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New form of the NSVZ β-function and its graphical interpretation

Substituting this expression into the right hand side of the NSVZ relation
we obtain

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γφ)j

i(α0, λ0)/r
)
.

From this form of the NSVZ β-function we see that the matter super�elds
and ghosts similarly contribute to the right hand side.
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Renormalization group functions de�ned in terms of the renormalized

couplings

The RG functions are de�ned in terms of the renormalized couplings by
the equations

β̃(α, λ) ≡ dα

d lnµ
;

(γ̃φ)i
j(α, λ) ≡ d ln(Zφ)i

j(α0, λ0,Λ/µ)

d lnµ
;

γ̃V (α, λ) ≡ d lnZV (α0, λ0,Λ/µ)

d lnµ
;

γ̃c(α, λ) ≡ d lnZc(α0, λ0,Λ/µ)

d lnµ
.

where the di�erentiation is made at �xed values of α0 and λijk0 .
There renormalization group functions are
1. scheme and regularization dependent;
2. satisfy the NSVZ relation only for a special renormalization prescription,
called the NSVZ scheme.
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The NSVZ scheme in the non-Abelian case

The RG functions de�ned in terms of the renormalized coupling constant
are scheme dependent and satisfy the NSVZ relation only in a certain
subtraction scheme. Similarly to

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459; Phys.Lett. B730 (2014) 184.

we see that in the non-Abelian case the RG functions de�ned in terms
of the bare coupling constant coincide with ones de�ned in terms of the
renormalized coupling constants if the boundary conditions

Zα(α, λ, x0) = 1; (Zφ)i
j(α, λ, x0) = δi

j ; Zc(α, λ, x0) = 1,

where x0 is a �xed value of ln Λ/µ, are imposed on the renormalization
constants. (For x0 = 0 we obtain minimal subtractions.) We also assume
that the renormalization constants satisfy the equation

ZV = Z1/2
α Z−1

c ,

Possibly, these conditions give the NSVZ scheme with the higher covariant
derivative regularization.
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Three-loop terms quartic in the Yukawa couplings

To verify the above results we consider the three-loop terms quartic in the
Yukawa couplings. They correspond to the graphs

V.Yu.Shakhmanov, K.S., Nucl.Phys., B920, (2017), 345.

Attaching two external lines of the background gauge super�eld we obtain
the diagrams contributing to the β-function.
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Three-loop NSVZ in terms of the bare Yukawa couplings

The corresponding contribution to the anomalous dimension is given by
the diagrams

The calculation gives the following result:

∆β(α0, λ0)

α2
0

= −2π

r
C(R)i

j d

d ln Λ

∫
d4k

(2π)4
d4q

(2π)4
λimn0 λ∗0jmn

∂

∂qµ

∂

∂qµ

×
( 1

k2Fk q2Fq (q + k)2Fq+k

)
+

4π

r
C(R)i

j d

d ln Λ

∫
d4k

(2π)4
d4l

(2π)4
d4q

(2π)4

×

(
λiab0 λ∗0kabλ

kcd
0 λ∗0jcd

( ∂

∂kµ

∂

∂kµ
− ∂

∂qµ

∂

∂qµ

)
+ 2λiab0 λ∗0jacλ

cde
0 λ∗0bde

∂

∂qµ

∂

∂qµ

)

× 1

k2F 2
k q

2Fq (q + k)2Fq+k l2Fl (l + k)2Fl+k
= − 1

2πr
C(R)i

j∆γφ(λ0)j
i.
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Explicit form of the RG functions de�ned in terms of the bare couplings

The simplest regulator has the form F (k2/Λ2) = 1 + k2/Λ2. In this case

∆γφ(α0, λ0)j
i =

1

4π2
λiab0 λ∗0jab −

1

16π4
λiab0 λ∗0jacλ

cde
0 λ∗0bde;

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)

)
− 1

2πr
C(R)i

j∆γφ(λ0)j
i +O(α0) +O(λ6

0).

and the NSVZ relation is valid for the RG functions de�ned in terms of the bare
couplings with the HD regularization.

(lnZφ)j
i = − 1

4π2
λiab0 λ∗0jab

(
ln

Λ

µ
+ g1

)
+

1

32π4
λiab0 λ∗0kabλ

kcd
0 λ∗0jcd

(
ln2 Λ

µ

+2g1 ln
Λ

µ
+ 2g21 − g̃2

)
+

1

16π4
λiab0 λ∗0jacλ

cde
0 λ∗0bde

(
ln

Λ

µ
+ ln2 Λ

µ
+ 2g1 ln

Λ

µ

+2g21 − g2
)

+O(α0) +O(λ6
0);

1

α0
=

1

α
+

1

2π

(
3C2 − T (R)

)(
ln

Λ

µ
+ b1

)
+

1

2πr
C(R)i

j
[ 1

4π2
λiabλ∗jab

(
ln

Λ

µ
+ b2

)
+

1

32π4
λiabλ∗kabλ

kcdλ∗jcd

(
ln2 Λ

µ
+ 2g1 ln

Λ

µ
+ b̃3

)
+

1

16π4
λiabλ∗jacλ

cdeλ∗bde

(
− ln

Λ

µ

+ ln2 Λ

µ
+ 2g1 ln

Λ

µ
+ b3

)]
+O(α) +O(λ6).
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RG functions de�ned in terms of the renormalized couplings

The RG functions de�ned in terms of the renormalized couplings are

γ̃φ(α, λ)j
i =

1

4π2
λiabλ∗jab −

1

16π4
λiabλ∗jacλ

cdeλ∗bde +O(α) +O(λ6).

β̃(α, λ)

α2
= − 1

2π

(
3C2 − T (R)

)
+

1

2πr
C(R)i

j
[
− 1

4π2
λiabλ∗jab +

1

16π4

×λiabλ∗kabλkcdλ∗jcd
(
b2 − g1

)
+

1

16π4
λiabλ∗jacλ

cdeλ∗bde

(
1 + 2b2 − 2g1

)]
+O(α) +O(λ6).

We see that the considered part of this β-function is scheme-dependent.
Imposing the boundary conditions

Zφ(α, λ, x0)i
j = δi

j ; Zα(α, λ, x0) = α/α0 = 1

we obtain g1 = b1 = b2 = −x0. Therefore, b2 − g1 = 0.
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The NSVZ scheme in the non-Abelian case

This implies that the NSVZ relation

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R)− 2C2γc(α0, λ0)

−2C2γV (α0, λ0) + C(R)i
j(γφ)j

i(α0, λ0)/r
)
.

is really valid for the RG functions de�ned in terms of the renormalized
couplings,

β̃(α, λ)

α2
= − 1

2π

(
3C2 − T (R)

)
+

1

2πr
C(R)i

j
[
− 1

4π2
λiabλ∗jab

+
1

16π4
λiabλ∗jacλ

cdeλ∗bde

]
+O(α) +O(λ6)

= − 1

2π

(
3C2 − T (R)

)
− 1

2πr
C(R)i

j γ̃φ(α, λ)i
j +O(α) +O(λ6).

Also we see that the NSVZ scheme is actually obtained with the higher
covariant derivative regularization supplemented by minimal subtractions.
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Conclusion

X In the case of using the higher covariant derivative regularization the
integrals de�ning the β-function are integrals of double total derivatives in
the momentum space. This has been proved in some theories in all loops.
For general non-Abelian SYM there are strong evidences in favour of this.

X The factorization into double total derivatives naturally leads to the NSVZ
relation for RG functions de�ned in terms of the bare coupling constant,
which is valid independently of the subtraction scheme with the HD
regularization.

X For RG functions de�ned in terms of the renormalized coupling constant the
NSVZ scheme can be constructed by imposing simple boundary conditions
on the renormalization constants in the case of using the HD regularization.
The NSVZ scheme obtained in this way can be considered as minimal
subtractions.

X The non-trivial three-loop calculation for the terms quartic in the Yukawa
couplings con�rms this proposal for the NSVZ scheme.

X For N = 1 SYM the derivation of the NSVZ relation seems to involve the
non-renormalization theorem for the three-point vertices with two ghost
legs and a single leg of the quantum gauge super�eld.
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Thank you for the attention!
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