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Standard Model

The Standard Model (SM) is a gauge theory with the group SU(3) X
SU(2) x U(1) and chiral fermions, which very successfully describes the
strong and electroweak interactions. The gauge symmetry is spontaneously
broken by the help of the Higgs mechanism,

SU(3) x SU(2) x U(1) = SU(3) x U(1)em,

producing the massive Z- and TW*-bosons together with the Higgs boson.
Their experimental discoveries have been excellent confirmations of the
Standard Model. From the theoretical point of view, it is a renormalizable
model, in which anomalies introduced by chiral fermions cancel.

However, it is widely believed that the SM is not an ultimate theory.
Quantum numbers of quarks and leptons imply that the gauge group
SU(3) x SU(2) x U(1) can be a remnant of a wider gauge group, e.g.,

SU(3) x SU(2) x U(1) € SU(5).

The SO(10) group allows to place all fermions of one generation (including
the right neutrinos) to the irreducible representation 16.

K.V.Stepanyantz Structure of quantum corrections in N’ = 1



Incompleteness of the Standard Model

However, the evolution of running coupling constants in SM is not
compatible with the prediction of Grand Unification Theories.

Moreover, the unification mass Mx ~ 10'GeV leads to unacceptably
rapid proton decay.

From the theoretical point of view, quadratically divergent quantum
corrections to the mass of the Higgs boson produce the problem of Higgs
mass fine tuning.

Inp/1GeV
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Supersymmetry and the Standard Model

A very promising way to solve the above problems is to consider N' = 1
supersymmetric extensions of SM.

In the supersymmetric version of SM running of the gauge coupling
constants agree with the predictions of Grand Unified Theories (GUT).
Increasing of the unification mass essentially increases the proton life time,
7 ~ M3 . There are no quadratically divergent quantum corrections to the

Higgs mass.

Inp/1GeV
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Supersymmetry and the Standard Model

Supersymmetric models predict a lot of new particles. There are
superpartners of quarks, leptons, and gauge bosons. Supersymmetry also
requires two Higgs doublets, which produces 2 x 2 x 2 — 3 = 5 Higgs
bosons.

To make masses of superpartners sufficiently large, it is necessary to break
supersymmetry. Although it is highly desirable to break supersymmetry
spontaneously, the simplest models (like MSSM) include soft terms, which
explicitly break supersymmetry, but do not produce quadratic divergences.
There are 4 types of the soft terms, including, e.g., gaugino masses.

In GUT theories running gaugino masses can be unified.

Investigation of quantum corrections in SUSY theories and theories with
softly broken SUSY and comparing them with experimental data can give
information about physics beyond SM.
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N = 1 supersymmetric gauge theories

It is convenient to describe A = 1 SUSY theories using N = 1 superfields,
because in this case supersymmetry is manifest. In this language, the N' =
1 SYM theory is given by the action

1 1 . .
S = 57 Retr/d4x d2OWeW, + 1 /d% d*0 ¢ (e*V) il p;
0
1 4 1
+{ [ dtado (qmfoids + A si0s0n) +ce).

where 0 denotes an auxiliary Grassmannian coordinates. V (z,0,0) is the
gauge superfield and the supersymmetric gauge field strength is defined as

1
Wa — *DQ —QVDa 2V .
L5 (¢ )
¢i(y*,0) are chiral matter superfields, D;¢; = 0, where y* = z# +

i0% ()40, is the chiral coordinate and D, and D, are the right and
left supersymmetric covariant derivatives, respectively.
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N = 1 supersymmetric gauge theories

We assume that the theory is invariant under the gauge transformations

_A¥ _
¢—>€A¢; €2V Se A €2Ve A7
where the parameter A = ieg ABTE is an arbitrary chiral superfield. This
gives the restrictions to the masses and Yukawa couplings,

mé)m(TA)mj =+ mng (TA)mi =05
)\éjm(TA)mk + Aémk(TA)mj + )\ank(TA)mi - 0.
For renormalizable theories the superpotential cannot be more than cubic
in the chiral matter superfields.

It is well-known that ultraviolet behaviour of supersymmetric theories
is better than in the non-supersymmetric case. For example, there are
no quadratic divergences in N' = 1 supersymmetric Yang—Mills theories
(SYM) with matter. As we already mentioned, this is very impotent for
phenomenology.

K.V.Stepanyantz Structure of quantum corrections in N’ = 1



Non-renormalization theorems in D = 4 supersymmetric theories

It is well known that the UV behavior of supersymmetric theories is better
due to some non-renormalization theorems.

N = 4 supersymmetric Yang—-Mills (SYM) theory is finite in all orders.

Divergencies in A/ = 2 SYM theories exist only in the one-loop
approximation. A/ = 2 hypermultiplets are not renormalized.

The superpotential in A = 1 supersymmetric theories has no divergent
quantum corrections.

The B-function of N' = 1 SYM theories is related to the anomalous
dimension of the matter superfields by the so-called NSVZ S-function.
For the pure A = 1 SYM theory it gives the exact expression for the
(B-function in the form of the geometric series.

In this talk it will be also argued that in N/ = 1 SYM theories the three-
point ghost-gauge vertices are finite.
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NSVZ S-function in N' = 1 supersymmetric theories

In N = 1 supersymmetric theories the B-function is related to the
anomalous dimension of the matter superfields by the equation

o (302 —T(R) + C(R)i ;" («, W’")
BlayA) = — 27(1 — Caar/27) ’

where

tr (TAT?) = T(R) 6B, (TH (TN = C(R);

fACDfBCD = CQ(SAB; r= 6AA-

V.Novikov, M.A.Shifman, A.Vainshtein, V.l.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.l.Vainshtein, Nucl.Phys. B 277 (1986)
456; D.R.T.Jones, Phys.Lett. B 123 (1983) 45.

The NSVZ [S-function was obtained from different arguments: instantons,
anomalies etc.
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NSVZ [-function and calculations in the lowest loops

The NSVZ S-function can be compared with the results of calculations in
the lowest orders of the perturbation theory. To make such calculations, a
theory should be regularized.

The dimensional regularization breaks the supersymmetry and is not
convenient for calculations in supersymmetric theories. That is why
supersymmetric theories are mostly regularized by the dimensional
reduction. However, the dimensional reduction is not self-consistent.

‘ W.Siegel, Phys.Lett. B 84 (1979) 193; B 94 (1980) 37. ‘

Removing of the inconsistencies leads to the loss of explicit supersymmetry:

\ L.V.Avdeev, G.A.Chochia, A.A.Vladimirov, Phys.Lett. B 105 (1981) 272. \

As a consequence, supersymmetry can be broken by quantum corrections
in higher loops.

L.V.Avdeev, Phys.Lett. B 117 (1982) 317;
L.V.Avdeev, A.A.Vladimirov, Nucl.Phys. B 219 (1983) 262.
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NSVZ [-function and calculations in the lowest loops

Using the dimensional reduction and DR-scheme a S3-function of N = 1
supersymmetric theories was calculated up to the four-loop approximation:

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356; l.Jack, D.R.T.Jones,
C.G.North, Phys.Lett. B 386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T.Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

The result coincides with the NSVZ S-function only in one- and two-loop
approximations. In the higher loops it is necessary to make a special tuning
of the coupling constant.

Thus, using of other regularizations is also interesting:

M.A.Shifman, A.l.Vainshtein, Sov.J.Nucl.Phys. 44 (1986) 321;
J.Mas, M.Perez-Victoria, C.Seijas, JHEP, 0203 (2002) 049.

Usually in supersymmetric theories other regularizations are used for
calculating a S-function only in one- and two-loop approximations.
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Higher covariant derivative regularization

The higher covariant derivative regularization is a consistent regularization,
which does not break supersymmetry.

‘ A.A Slavnov, Nucl.Phys., B 31 (1971) 301; Theor.Math.Phys. 13 (1972) 1064. ‘

In order to regularize a theory by higher derivatives it is necessary to
add a term with higher degrees of covariant derivatives. Then divergences
remain only in the one-loop approximation. These remaining divergences
are regularized by inserting the Pauli-Villars determinants.

A.ASlavnov, Theor.Math.Phys. 33 (1977) 977. ‘

The higher covariant derivative regularization can be generalized to the
N = 1 supersymmetric case

V.K.Krivoshchekov, Theor.Math.Phys. 36 (1978) 745;
P.West, Nucl.Phys. B 268 (1986) 113.

In this talk we will mostly discuss quantum corrections in SUSY theories
regularized by higher covariant derivatives.
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NSVZ j-function for N' =1 SQED with N flavors

The simplest particular case of the A/ = 1 SYM theory is the N/ = 1
supersymmetric electrodynamics (SQED) with Ny flavors, which (in the
massless case) is described by the action

Ny
1 42 Z 1 4., 54 * 2V Tx =2V
S = 46%Re‘/d rd HWaWa+f=14/d xd 9(¢f€ ¢f+¢f€ (bf)’

where V' is a real gauge superfield, ¢y and ¢y with f = 1,..., Ny are
chiral matter superfields, and W, = D?D,V/4. This case corresponds to

0220; O(R):I, T(R)=2Nf r=1

)

where I is the 2Ny x 2Ny unit matrix. Therefore, for N =1 SQED with
Ny flavors the NSVZ f-function has the form

8(0) = N (1 - 5(a).

M.A.Shifman, A.l.Vainshtein, V.I.Zakharov, JETP Lett. 42 (1985)
224; Phys.Lett. B 166 (1986) 334.
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N =1 SQED with Ny flavors, regularized by higher derivatives

In order to regularize the theory by higher derivatives, it is necessary to
add the higher derivative term to the action:

1
Sreg = QRe / d*z >0 W R(0? /| A*)W,
Ny 1 N N
e [ atwats (3 o+ dpeVay).
f=1

where R(0%/A?) is a regulator, e.g. R =1+ 02" /A%".

Adding the higher derivative term allows to remove all divergences beyond
the one-loop approximation. To remove one-loop divergences, we insert in
the generating functional the Pauli-Villars determinants:

Z[J] = /Du H ( det PV (V, M[)) Nyer exp {iSreg + i 5gf + Sources},
I

Ser=1; Y eytM?=0; M;=asA, where a; # aj(eo).
T T
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Renormalization

e [ 4 d49(—LV(— ) 8211, 15V (p) d~(ao, A/p)
- (27T)4 1671' p 1/2 p 0, p

=z

(67(~2,0)05(0,6) + 5(~p,0)61 (1, 0) ) Gla, A/))-

1

-

+

~
Il

where 82H1/2 = -D®D?D, /8 is a supersymmetric transversal projection
operator. The renormalized coupling constant a(ag, A/u) is defined by
requiring that the inverse invariant charge d=' (g (o, A/p), A/p) is finite
in the limit A — co. The renormalization constant Z3 is defined by

i Z3(CY,A//J,)

(7)) «

The renormalization constant Z is constructed by requiring that the
renormalized two-point Green function ZG is finite in the limit A — oo:

Gren(a, p/p) = lim Z(a, A/p)G(eo, A/p).
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The renormalization group functions

defined in terms of the bare coupling constant

In most original papers

V.Novikov, M.A.Shifman, A.Vainshtein, V.l.Zakharov, Nucl.Phys. B 229 (1983) 381;
Phys.Lett. B 166 (1985) 329; M.A.Shifman, A.l.Vainshtein, V.l.Zakharov, JETP Lett.
42(1985) 224; Phys.Lett. B 166 (1986) 334.

the NSVZ (-function was derived for the renormalization group functions
defined in terms of the bare coupling constant

d A
B(Ozo(a,/\/u)) = ao(i?I;A/M) a=const’

1(aoa, /) = -2

a=const

These renormalization group functions

1. are scheme independent for a fixed regularization;

2. depend on the regularization;

2. in all loops satisfy the NSVZ relation in the case of N' =1 SQED with
Ny flavors, regularized by higher derivatives.
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The renormalization group functions

defined in terms of the bare coupling constant

The above RG functions do not depend on the renormalization prescription,
because they can be expressed via unrenormalized Green functions:

_ad_l(a()v A/p))
Jdlnp

6d_1 (C%(), A/p)
8&0

0 = lim W = lim ( Blao)

p—0 dln A a=const p—0

where in the last equality g and p are considered as independent variables.
Similarly, differentiating

InG(ao, A/q) = In Gren(av, 1/q) —In Z(a, A/ p)
+(terms vanishing in the limit ¢ — 0)

with respect to In A at a fixed value of «, in the limit ¢ — 0 we obtain

B alnG(ao,A/q))

dlng

(aln G(ao,A/q)ﬁ(ao)

8040

Therefore, 5(cp) and () do not depend on an arbitrariness of choosing
the renormalization constants.
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The NSVZ relation with the HD regularization

With the higher covariant derivative regularization loop integrals giving a
(B-function defined in terms of the bare coupling constant are integrals of
total derivatives

‘ A.Soloshenko, K.S., hep-th/0304083. ‘

and even integrals of double total derivatives

\ A.V.Smilga, A.lVainshtein, Nucl.Phys. B 704 (2005) 445. \

This allows to calculate one of the loop integrals analytically and to obtain
the NSVZ relation for the RG functions defined in terms of the bare
coupling constant. In the Abelian case this has been done in all loops

‘ K.S., Nucl.Phys. B 852 (2011) 71; JHEP 1408 (2014) 096. \

B(ozC%O) - ﬁ (d_l(ao,A/p) B aal) ‘p:O
= %(1 — dl%ln(}’(am/\/q)‘q:o) = %(1 — V(ao)).
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Three-loop calculation for N' =1 SQED

2

ﬁ(a / d'¢ 9 9 In(¢>+ M?) dq d*k e
2 — 44
a? fdl A{ WZ )4 dg* Dqu q? AT (2m)* (2m)* k2R

2
“ar ‘92“ (e - ZI: G +M2)((k1+q> ) [ (0 )

—2€2Nf(/(;lﬂ) t2k+t Z / t2+M2)((k:1+t)2+M3>ﬂ

+47r/ dq d'k d'l € ii{ ( B 2k
(2m)* (2m)* (2m)* k2Ril2 Ry 9 D4, ¢*(q+k)* (g +1)*(g + k +1)?

2 N (k* + M3)

+q2<q+k>2<q+z>2) Z,:f( <q2+M2><<q+k>2+M%>(<q+z>2+M%>
1 1

T b 02+ M) (@ + M@+ R+ M@+ D2+ M2) (@ + MI)?

5 AM?

((g+ k)24 M7)((q+1)? +M2)
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Double total derivatives

The integrals of double total derivatives do not vanish due to singularities
of the integrand. This can be illustrated by a simple example

[ e T (B ) = g 0),

where we assume that the function f(q?) has a sufficiently rapid fall-off at
infinity. The sum of singular contributions appears to be proportional to
the anomalous dimension.

Below we briefly explain, how one can prove the factorization of integrals
defining the S-function into integrals of double total derivatives, following
the method proposed in

‘ K.S., Nucl.Phys. B 852 (2011) 71. ‘

It is convenient to use the background field method. In the Abelian case
it is introduced by making the replacement

V-sV+V,

where V' is the background gauge superfield.
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Main steps of the all-loop derivation

1. The integral over the matter superfield is Gaussian and can be calculated

exactly:
m Ny
exp (11" /DV H H det (%7 f)cf/2 exp { <Sgauge + S + ng)}
1=0 f=1
where ¢g = —1, My = 0 corresponds to usual superfields in the
massless limit, and the operator % encodes sequences of the vertices and
propagators.

Terms quadratic in the superfield V' in this expression have the form

= (Ve

2
+szZc1< (VQJo * VQJox) + Tr(V JO*)>1,1P|’

where Q.Jy denotes the effective vertex and x does not contain V.
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Graphical interpretation of the operator x

The operator x encodes sequences of vertices B and propagators P,

x = 1 + BP + BPBP + DBPBPBP +

/ | |
I L

VoL
Vo LY

The trace makes a circle from the matter line.
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Graphical interpretation of angular brackets

Angular brackets denote the functional integration,

m Ny

/DV AVITT T det(er)e/? exp {i(sgauge + Sp + sgf)}
I1=0 f=1
m Ny )

/DV TT I det(xr)*/ exp {i(sgauge + Sy + ng)}

I=0 f=1

(AV]) =

The angular brackets make propagators of the quantum gauge superfields
V from V-s inside the operator .

Thus, non-trivial contributions to the effective action can appear from the
following effective diagrams:

e
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Main steps of the all-loop derivation

2. The p-function defined in terms of the bare coupling constant can be
obtained from AT by the substitution

V(z,0) — 6%
after which
1., Blag) 1 d (., d(AT®)
—V,. - V. A/p)— _ A=)
27TV4 a? 27TV4 dln A (d (a0, A/p) ao) p—0 dlnA v=es’

where V), is the (properly regularized) space-time volume.

After the above substitution we present the expression given earlier in the
form of an integral of a double total derivative.

In the coordinate representation the integral of a total derivative is given
by the expression

Tr([w“,Something}) =0.
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Main steps of the all-loop derivation

3. Diagrams in which the external lines are attached to different matter
loops

After some algebraic transformations the corresponding contribution can
be presented in the form

(S emvens)),

fo<(chTr9 1420, Q [y, In(x )])2>=0,

where y* = 2, — i0%(7,)4"0s.
From this expression we see that the considered contribution is given by
an integral of a double total derivative . It vanishes, because the integrand
does not contain singularities.

K.V.Stepanyantz Structure of quantum corrections in N’ = 1



Main steps of the all-loop derivation

4. The main (non-singlet) contribution

Similarly, the non-singlet contribution (which corresponds to diagrams in
which external lines are attached to a single loop of the matter superfields)
can be written as

d

i N ZOCI<Tr(VQJ0 *VQJO*)>I’

V=04

= One-loop result — *Nf dl A ZCI T"<94 [y#, {( *)", In(x )”>I

—singular terms containing 5—functlons,

Thus, the sum of the considered diagrams is an integral of a double total
derivative. However, the result does not vanish due to singularities of the
integrand:

Oy __; 0 _iP" _
op,’ Pt

—21264(P) = —272i6* (p).

K.V.Stepanyantz Structure of quantum corrections in N’ = 1



Main steps of the all-loop derivation

5. The sum of singularities

Evidently, singular contributions can be present only in the massless case.
Therefore, there are no singularities for the Pauli-Villars superfields.
Singularities proportional to J-functions lead to cutting the diagrams
(without external legs). As a result we obtain graphs corresponding to
the two-point Green function of the matter superfields

\ A.V.Smilga, A.l.Vainshtein, Nucl.Phys. B 704 (2005) 445. \

@ S @+%;+m

It is possible to relate the sum of singularities with the two-point Green
function of the matter superfields.
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Main steps of the all-loop derivation

6. The result
After summing singularities and adding the one-loop result we obtain

dAT'?) Ny ( _dInG )
dinA lvees 272 7* dIn A lg=0/"
The expression
dlnG d dlnZ
dlnA(ln(ZG) an> o~ dma o)

is the anomalous dimension (defined in terms of the bare coupling
constant). Therefore, the final exact expression for the S-function defined
in terms of the bare coupling constant for the considered theory has the

form
Blao) _ Ny
a?d m

(1 *7(%))-
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Derivation of the NSVZ S-function in the Abelian case by summing

supergraphs

Qualitative picture:

‘ A.V.Smilga, A.l.Vainshtein, Nucl.Phys. B 704 (2005) 445. ‘

oD O
e |

AL
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The RG functions defined in terms of the renormalized coupling constant

RG functions defined in terms of the bare coupling constant are scheme
independent for a fixed regularization. However, RG functions are usually
defined by a different way, in terms of the renormalized coupling constant,

~ A

5(&(()&0,/\/#)) = W ap=const’

N dln oo, A/ ), A
'y(oz(ozo,/\/,u)) = Z(Ot(d(inu// ) /lu) ap=const

These RG functions are scheme-dependent. They coincide with the RG
functions defined in terms of the bare coupling constant, if the boundary
conditions

ZS(aaxO) = 1’ Z(OZ,LL‘()) =1

are imposed on the renormalization constants, where x( is an arbitrary
fixed value of In A/p.

A.L.Kataev and K.S., Nucl.Phys. B 875 (2013) 459; Phys.Lett. B 730 (2014)
184; Theor.Math.Phys. 181 (2014) 1531.
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The NSVZ-scheme with the higher derivatives in the Abelian case

¥ (e, x)) = _dlnz(ad(;low),x)

_OlnZ(a,z) dafag,z) IlnZ(a(ag, ), x)
da Oz Oz ’

where the total derivative with respect to © = InA/u also acts on x
inside a. Calculating these expressions at the point = xy and taking into
account that 91n Z(«, xp)/0a = 0 we obtain

¥(ao) = ().

The equality for the 5-functions can be proved similarly.

The RG functions 8 and 7 (defined in terms of the renormalized coupling
constant) are scheme-dependent. They satisfy the NSVZ relation only in
a certain subtraction scheme, called the NSVZ scheme, which is evidently
fixed in all loops by the boundary conditions

(Z3)nsvz(ansvz, zo) = 1; Znsvz(ansvz, zo) = 1,

if the theory is regularized by higher derivatives.
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The scheme dependence in the three-loop approximation

The (three-loop) renormalized coupling constant for N' =1 SQED can be
calculated in the case Ry = 1+ k%7 /A"

izé—%(ln%—kbl) - agf(ln%—i-bz) - Oéjr];[f (%IHQ%

A - 1
—ln—(Nf E C]lnaI—I—Nf-i-*—Nfb])+b;3)+0(0[3)7
H I=1 2

where b; are arbitrary finite constants.
Similarly, the renormalization constant Z (in the two-loop approximation)
for the matter superfields is not also uniquely defined:

A 2(Np+1 A
Z:1+g(1nf_|_gl> _|_0/(7f;—)1n2f
T W 27 W

a? A = 1 a?gs 3
7T21nM<Nf;C[lna1Nfbl+Nf+291) +?+O(a ),

where g; are other arbitrary finite constants.
The subtraction scheme is fixed by values of the constants b; and g;.
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The scheme dependence in the three-loop approximation

The RG functions defined in terms of the bare coupling constant are

Blao) _ Ny | aoNy %Nf 1 2);
S R <Nf,z;”1“a”Nf+z)+O<%)’

2 n
(67} (&% 1 E
Y(a) = T + F(Q)(Nf;CIlna] + Ny + 5) +0(ap).

They do not depend on the finite constants b; and g; (i.e. they are scheme-

independent) and satisfy the NSVZ relation.
The RG functions defined in terms of the renormalized coupling constant

are

E(a) Ny aNy aNf
PR 73 (Nf;CIlnaI+Nf+ +Nf(bzibl))+0( )

~ a o 1 -
’y(a) = —ﬂ_+71_2<Nf+2—l—NfIZlcllnaI—Nfbl—i—Nfgl) +O(O[3)

and depend on a subtraction scheme.

K.V.Stepanyantz Structure of quantum corrections in N’ = 1




The NSVZ scheme in the three-loop approximation

The NSVZ scheme is determined by the conditions

ap(ansyzs To) = ansvz; Znsvz(ansvz, zo) =1

For simplicity we set g; = 0 (this constant can be excluded by a redefinition
of ). In this case 2o = 0 and the above conditions (for the NSVZ scheme)

give

QQZb] :b2=b3:0.
In this case in the considered approximations
E(a) Ny aNy  o’Ny " 1 3 B(«)
o =t~ (W D ertnar+ Ny £ 3) +0(®) = S5
I=1

~ dinZ a a? 1 = 3
’y(a)fdlnuff? 71_2(Nf+2+Nf;cllnaI)+O(a ) = ().

Consequently, in this scheme the NSVZ relation is satisfied.

Structure of quantum corrections in N’ = 1
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RG function for ' = 1 SQED in different subtraction schemes

NSVZ-scheme with the higher derivatives

~ a o?/1 -
Insvz(a) = —— + 7(5 + N> erlnag + Nf) +0(a%);
m ™ =
Busvz(a) o*Ny (1+a a2(1+Ni 1 +N)+O( 3))
a) = — - (= crlna a’) .
NSVZ - — 33 fI:1 rlna; + Ny

MOM-scheme (The results with the dimensional reduction and with the
higher derivative regularization coincide.)

- 2(1+N

wom(@) = -2+ TEEI L o),

~ 2N 2

Buom(a) = L (14 2 = 25 (143N, (1 ¢(3)) + 0(a?)).

K.V.Stepanyantz
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The NSVZ relation and the dimensional reduction

In the DR-scheme the NSVZ relation is not valid starting from the three-
loop approximation

L.V.Avdeev, O.V.Tarasov, Phys.Lett. B 112 (1982) 356; l.Jack, D.R.T.Jones,
C.G.North, Phys.Lett. B 386 (1996) 138; Nucl.Phys. B 486 (1997) 479; R.V.Harlander,
D.R.T .Jones, P.Kant, L.Mihaila, M.Steinhauser, JHEP 0612 (2006) 024.

due to the scheme-dependence.

Why the higher derivative regularization naturally gives NSVZ and the
dimensional reduction does not?

In the above derivation we essentially use the possibility to take the limit
p — 0. This follows from the fact that the higher derivative terms and the
derivative with respect to In A make the integrals in this limit well-defined.
In the case of using the dimensional reduction the limit p — 0 is not well-
defined. However, it is possible to make calculations similar to the case of
using the higher derivative regularization

S.S.Aleshin, A.L.Kataev, K.S., JETP Lett. 103 (2016) 77; S.S.Aleshin, 1.0.Goriachuk,
A.L.Kataev, K.S., Phys.Lett. B764 (2017) 222.
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The NSVZ relation and the dimensional reduction

With the dimensional reduction in the three loop approximation
d’q 1

d Yo, A/p,e) —ag! =8N Aa/ii

( 0 /p ) 0 f (27r)d q2(q—|—p)2

£ diq 1
_ € 1 A
8TNgA 1—¢ / (2m) ¢2(q + p)? (In G(ao, g/ ’5))1-|00P

_8aNpAE— a1 Glag g/Me)
M 173¢/2 ) @n)q?(q+p)? 0,4/85€))2-lo0p, Ny

+finite terms + O(a2Ny) + O(ad),

Then the boundary conditions analogous to the case of HD (at the three-
loop level) are

/3N
Jim ap(a’ e, = 0) = o' — 47r2f+0(o/4); lim Z'"(d e 20 =0) = 1.
They are equivalent to the coupling constant redefinition (o’ ~ NSVZ and
a ~ DR) / PN,
472

+ O(a?).
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Renormalization of the photino mass in softly broken N/ =1 SQED

The integrals defining the anomalous dimension of the photino mass

dInmg
Ym(@0) = “0R

in softly broken A" =1 SQED regularized by higher derivatives are also integrals
of double total derivatives in all loops.

I.V.Nartsev, K.S., JHEP 1704 (2017) 047; JETP Lett. 105 (2017) 69. \

This can be proved by the generalization of the method described above and
leads to the NSVZ-like relation

Ym (o) = aOTNf [1 - d%i)(ao'y(ao)ﬂ.

J.Hisano, M.A.Shifman, Phys.Rev. D56 (1997) 5475;
I.Jack, D.R.T.Jones, Phys.Lett. B415 (1997) 383;
L.V.Avdeev, D.l.Kazakov, I.N.Kondrashuk, Nucl.Phys. B510 (1998) 289.

The NSVZ-like scheme (for the RG functions defined in terms of the renormalized
coupling constant) in this case is defined by the conditions

Zs(a, z0) = 1; Z(a,z0) = 1; Zm(a, o) = 1.
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Simple non-Abelian example: exact expression for the Adler D-function in

N =1SQCD

‘ M.A.Shifman and K.S., Phys.Rev.Lett. 114 (2015) 051601; Phys.Rev. D 91 (2015) 105008. ‘

Let us consider A/ = 1 SQCD interacting with the Abelian gauge field.
This theory is described by the action

1 1
S=——tr Re/d4xd29 WeW, + —QRe/d‘lxsz wWw,
295 4eg

N
2

f=1

1 ~
+(§/d4x d*6 m0f¢§c¢f + C.C.)‘| .

We assume that the gauge group is SU(N..), and matter superfields belong
to the (anti)fundamental representation.

This theory is a supersymmetric generalization of QCD, in which one takes
into account interaction of quarks with the electromagnetic field.

1 4. g4p( 4t 2¢; V42V I+ —2q;V—2v'
Z/dm 0(6Fe VA oy 4 Gre2uV 2V gy
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V is the non-Abelian SU(N.) gauge superfield (gluons + superpartners)
V is the Abelian U(1) gauge superfield (photon + superpartner)

¢¢ and Jsf are the chiral matter superfields with the charges gse and
—gye with respect to the group U(1), respectively (right and left quarks
+ superpartners).

The strength of the non-Abelian gauge superfield is denoted by

W, = =D?*(e 2V D,e?V),

ool —

and the strendgth of the Abelian gauge superfield is
L 5o
W, = ZD D, V.

The considered theory contains two coupling constants:

2 2
oy = — and o= —.
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The Adler D-function

We consider quantum corrections to the electromagnetic coupling contant
«, which appear due to the quark loop with internal gluon and quark lines.
The diagrams containing internal photon lines are omitted. (Thus, the
electromagnetic field V' is considered as an external field.)

Due to the Ward identity the two-point Green function of the superfield
V is transversal:

1 dp

AT — —_—
167 J (2m)4

LAV O, ),V (d (a0, ags, A/p) — g 1).
We calculate the Adler function, which is defined in terms of the bare
coupling constant by the equation

3m _d
2 dlnA

_ 3m dag
p=0 202 dlnA’

D(aps) = (d_l(oém Qos, A/p) — oy 1)

Thus, it depends on regularization, but is independent of a subtraction
scheme.
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The higher covariant derivative regularization

We add to the action the higher derivative term, e.g.,

_ 1 4. 120 Q170 ,— Vv2v? Q -Q
SA—ZggtrRe/d xd 9(6 W% )|:R( W) 1i|(€ Wae )
The covariant derivatives have the form
Vo= efQJrDaeQJr; Vi = eﬂDdefg, where 2V = 69+eQ,

A is a dimensionful parameter, and R—1 is a regulator, such as R(0)—1 =0
and R(z) — oo for  — oo, for example, R(z) = 1+ 2™,
Remaining one-loop (sub)divergences are regularized by inserting the
Pauli-Villars determinants into the generating functional:

[[V] = —iln / DVD®DE [ det(V, V, M) exp (i(S+SA+ng+Sghosts)),
I=1

where M; = a;A and a; do not depend on ;.
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Exact expression for the Adler function

It is possible to derive the following NSVZ-like exact expression for the
Adler function for the considered theory

D(aos) = qu ( 7(0105)).
Note that, in general, the Adler D-function consists of two contributions

2
D(aos) quDl 0s) (ZQf) Dy (as),
f

which correspond to two different types of diagrams:
SU(N,) gauge

aupertlled
pho >tWhm photon % photon
matter loop matter loop matter loop
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Non-Abelian N' = 1 supersymmetric gauge theories

Investigation of non-Abelian A/ = 1 SYM theories with matter is much
more complicated. Let us consider the theory

1
S=53 Retr/d4xd29W“W + /d4xd49¢*’( )il
/d4xd2 m]¢ ij + Az]kqs ¢]¢k> +c.c }

where matter superfields belong to a representation R of the gauge group,
and Yukawa couplings )\ satisfy the condition

)\z)Jm(TA)mk + )\émk(TA)mj + )\Oka(TA)mi —0.
It is invariant under the gauge transformations
A 2V —At 2V _—A
¢ — e’ ¢, es’ —e e“e

where the parameter A is an arbitrary chiral superfield.
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The background field method, regularization, and gauge fixing

Quantum-background splitting is made by the substitution

+
62‘/*)69 62‘/69.

The background superfield V is defined by 2V = ¢? 2.
We choose the following higher derivative term

_ 1 4, 29 Q Qrira, — —Q 7@2v2 B
SAQe%Retr/dxdt?eeWe e r( - <37 1]Adj

1 + o+ V2Vv?2
Q.0 - -, *+ 4., g4p 1+ QT Q . 4l
xeeWyee e —|—4/da:d9¢>e e [F( 16A2) l}ee o,

and the gauge fixing term

s = g [t 106 o7 (- )]
0

16A2
+effe VY 4+ efn+f+en+62V),

where the regulators R, F', and K have a rapid growth at infinity.
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Ghost Lagrangian and BRST invariance

Actions for the Faddeev—Popov and Nielsen—Kallosh ghosts have the form
1
Sgp = e—2tr/d4x d*é (eﬂée_n + e_Q+E+eQ+)
0

() (™) + () e

Snk = —tr/d4xd49b+[ K( - ?;;2)69]Adjb.

The total action of the gauge fixed theory is invariant under the BRST
transformations

oV = —E{ ($>Adj (e—g+c+en+) i (%)Adj (ence_ﬂ) };

¢ = eco; 6¢ = eD?(e7 2V fTe?V); sct =eD?(e?V fem2V);
dc = ec?; st =e(ch)?; dof =0; ob=0; o =0,

where ¢ is an anticommuting scalar parameter.
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Renormalization

In our notation the renormalization constants are defined by the equations
1 Z 1 Z _

=2 =2 V=Ve V=2v2 PV
ap o« o £

b= +/Zybg; ec= 2.7, ' Crep; $i = (\/Zs) (9R);

mij - mgqn(Zm)mi(Zm)nj; Aijk = )\glnp(Z)\)mi(Z)\)nj(Z)\)pk~

The subscript R denotes renormalized superfields, «, A, and £ are the
renormalized coupling constant, the Yukawa couplings, and the gauge
parameter, respectively; m denotes renormalized masses.

It is possible to impose the following constrains to these renormalization
constants:

(Zm)i = (Z\) = (VZo)i?s  Ze=2y%  Zy=17."
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Non-renormalization of the vertices with two ghost legs and one leg of the

quantum gauge superfield

We will prove that the three-point vertices with two ghost legs and a single
leg of the quantum gauge superfield are finite in all orders.

| K.S., Nucl.Phys. B909 (2016) 316. |

There are 4 such vertices, ¢Ve, e Ve, eVet, and e Ve,
They have the same renormalization constant Z;l/QZCZV. Therefore, the
above statement can be rewritten as

d
Z-27 7)) = 0.
dlnA( @ v)

In the one-loop approximation this has first been noted in the paper

S.S.Aleshin, A.E.Kazantsev, M.B.Skopsov, K.S., JHEP 1605 (2016) 014. ‘

Consequently, there is a subtraction scheme in which

1
—iana +InZ.+InZy =0.

Important: Below we will demonstrate that Z, is divergent. Therefore, The
Green functions of the structure ¢ V"¢ are divergent for n # 1.
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Slavnov—Taylor identities

The Slavnov—Taylor identity can be derived by making the substitution
coinciding with the BRST transformations in the generating functional
and is written as

oT NS
0= /d%d‘*ew v (V) +/d4xd29I ((oet) = = <5cA>

4 2N —xA §F * A 6F *1 6F
+ (0¢s) 5@) +/d zd*0, ((sc; ) g + (00 oem + (59 >5¢*i)

where we keep the e-dependence.
Also we will use the identity obtained by making the substitution ¢ — ¢+a,
where a is an arbitrary chiral superfield:

or 1
oA = EDQ sV,

T _Lpesvay, e

6(56;;‘ 4

where, for simplicity, the background superfield is set to 0.
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Slavnov-Taylor identities for the three-point functions

Let us differentiate the Slavnov—Taylor identity with respect to ¢;7, 7,

and cZ, set the fields to 0, and use the equations

5T D2D2 5 5
dc;Boc — “Gelndani G

xr

1 _
(6V,P) = —¢- 1GeD*0%,0an.

As a result we obtain the identity

3 3
GO s — = GNP oy
52
G. (0;/A*) D ym (5¢) =0.
Similarly, differentiating with respect to ¢;”, ¢, and ¢ gives
9 /49 53T 9 A9 53T
e G.(02/A%)D wW—&-s G.(92/A?) D2 S SEPVORD
52
Ge (0,/0%) UW<565>:0

'll)
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Explicit expressions for the three-point ghost-gauge functions

To simplify these identities we use explicit expressions for the
Green functions. They can be derived using dimensional and chirality
considerations:

6°T €0 . ABC d'p d'q )
o -
5E;A5Vy35cc 16 6 / (2m)* (2m)4 (f(p7 q)07y o

—F,(p,q)(v"*)a"D*Dy, + F(p, q) ) (D§5§y q+p) D36, (q ))’

5T zeo ABC dp dq ~ 9
- F(p,q) D253 D25}
TR = 10 [ AL Fp D282, 0 + DD 1),
where 9%I1; 5 = —D*D?D, /8 is the supersymmetric projection operator,
and

8%, () = 04(0, — 0,)ea " =),

This implies that ¢ + p is the momentum of ¢*, —p is the momentum of
V', and —q is the momentum of ¢ (or c¢*).
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Explicit expressions for the ghost correlator

Let us introduce the chiral source 7 and add the term
—%’ /d% 420 fABC 7AB L | ¢ ¢

to the action. From dimensional and chirality considerations we obtain
52 . 53T
5cCo D<565>:_25'5 CocDo 7B
cCoc 7 0¢,,07,

_ ot ppep [ d'p dg 258 268 (N
=" e /(277)4 (QW)ALH( q)D26%,(q+ p) D76y, (q);

where [H(p, q)] = 1, and, by construction,
H(p,q) = H(p,—q —p).

Substituting explicit expressions for the Green functions into the first
Slavnov—Taylor identity, we can rewrite it in the form

Ge(q)F(q,p) + G(p)F(p,q) = 2G(q +p)H(—q —p,q);

K.V.Stepanyantz Structure of quantum corrections in N’ = 1



Finiteness of the function H

First, let us prove that the function H(p, q) is finite. H is contributed by
diagrams in which one leg corresponds to the chiral source J and two
other legs correspond to chiral ghost superfields c. These diagrams contain

D2D2 D2D2 2 D2D2
4 2 A Yy 4 4 A 8 YTy
/d yd=0,J, 432 5 102 5 /d yd 0,7, 482 157 (5

Therefore, the considered contribution can be presented as an integral
over the total superspace, which includes integration over

1 _
/d49 = —§/d29D2 + total derivatives in the coordinate space .

This implies that two left spinor derivatives should act to the chiral
external lines. Therefore, the non-vanishing result can be obtained only

if two right spinor derivatives also act to the external lines. Consequently,
the result should be proportional to, at least, the second degree of the
external momenta and is finite in the ultraviolet region.

Thus, the function H(p,q) is UV finite.
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Non-renormalization of the three-point ghost-gauge vertices

Let us multiply the Slavnov—Taylor identity to the renormalization constant
Z. (such that (G.)r = Z.G is finite), differentiate the result with respect
to In A, and take the limit A — oo. Due to finiteness of (G.)r and H the
result is written as

(COR@ 75 Fla.0) + (Gre) s )| =01

A—oco

Setting p = —q, we obtain

d
dmal e, =0

Therefore, the corresponding renormalization constant is finite

d _
T (Za P Zezv) =0,

Thus, the function F(p,q) is also finite. This implies that all three-point
ghost-gauge vertices are finite.
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One-loop calculation: two-point ghost Green function

In the Euclidean space after the Wick rotation

Ak &1 1 1
(p) =1+ €2 I N A Y XY AT V)
60 =1+40: [ e (- ) (- + oy
2

p 4 24,2
—m) + O(ep; €5A5)s

where Ry, = R(k?/A) and K;, = K(k%/A?).
We see that this function is divergent in the ultraviolet region (at infinite
A).

dIn G,

apCa(1l —
Ye(o, Ao) = oA ~apCa(1 = &)

= ———= > 1 0(ad, ap)d).
p=0; a,A\=const 67
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One-loop calculation: three-point gauge-ghost Green functions

e

cor c*

N
’
é—‘/\/514_\g

€0 ABC i, d'p d'q 4 2 B
0 I _
Lrane [t G Ef et 0.+ o) (1.0 2V 0. )

+E,(p.9)(1")a" Do DV E (6, ~p) + F(p, ))VP (0, ~p) ) (6, —q);

o0 [ g S AL A0+ ) Flp )V 090, —0)
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One-loop calculation: the functions F' and F

Calculating these diagrams gives

2C d4k, + 2 2
F(paQ):1+eU 2/ 4{_ 2 (q pz) 2 2 fOQP 2
4 (2m) Ripk2(k+p)2(k —q)?  Kik?(k+q)?(k+q+p)
N ' +(Q_L> (_ 2g+p)?® 2
Kik?(k + p)?(k + q + p)? Kr Ry k*(k+q+p)? k*(k+q+p)?

1 1
Ck2(k+q)? k2 (k+p

) b+ Olat o).

F(p q):1—6302/ a'k { v + o (a+ )’
’ 4 @2m)* VRyk2(k + q)2(k +q+p)?  Kipk?(k —p)?(k+q)?
" & ¢ n 2&o B 2&o (570 B L)
Kik?(k+p)2(k+q+p)? Kipk?(k+p)?  Kpk?(k+q+p)?

Kk Rk
2¢° 1 1 , ,
X <k4(k+q)2+k2(k+q+p)2 kz(k—i—q)?) } + O(ag, aoNg)-

We see that these expressions are finite in the ultraviolet region.
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One-loop calculation: the function f

The expressions for the functions f and F), are very large and in writing
them we will use the notation

The function f has the form

1 d*k e3Cy 2k,.q, 2k>
1 172 2 2 { 5 Dktg + 2
4) @m)*k*(k+q)*(k+q+p)? L(k+aq) (k+q+p)
2k, (q + p)* 2k ku(k +q+p)*
+R, (L TE] A T At (2 TETEL
p((k +q+ P Revg T (B + @) Rirgip ( (k+q+p)>
ku(k + Q)H)Ak Ak ) _ 2ku(k+ " Ritqip — Ritq
(k +q)? TR ) RiqRirqrn (K +q+ 10)2 —(k+4q)?
_2Rpiqrp —Rp) 1 (kuq (k +q+p)* — kug"p® N kup“)
(k +q+ p)2 —p? Rytqtp (k + ) i Ritq
2(Rk+q — Rp) 1 (kZ(k +q)% — k*p? ku(k+ q)*
- 2 2 : 2 k+q+p + Y
(k+q)? —p* Ritq\ (k+q+p)

f(p,q) =

Akqtp
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One-loop calculation: the function F),

1 d*k e2Cy 2
F — T5 fe « @
u(p,q) = 16/(2 YRk 92k g p)z{kQAk[(Q‘f'p)uk (k+a)" +quk

e 2 2 o 4]6“ 2 o 9
x(k+q+p) +k#(k q" — qap )] Rk+q+(k+q)2Ak+q|: qukap” +puk

(e} « 2 «
+kuqap® — ku(k + q)° + kaq® (2 + 2k + p)u} + mAkJrqﬂ? [(Iuka(q +p)

< 2 o 2 2 Ritq4p — Ritq
o — o - - 2 2

4kQQa lep v v 2 2 2
—|— A +q+ A + - 5 k + ky v
Rit+qRitq+p (k+q)2(k+q+p)? Fatp it [(pﬂp wb )(( ) av)

AR, . o
e Ajiq (qukap® — kpgap
(k + q@)? Rt q+p +a 2 g )

X

—(k+ q)Qqu) +p*(qukap™ — kuqapa)] +

4(Ritq — Rp) (kuqad®™ — qukap®) | 4(Riiqip — Ryp) ((pup” — 6,0 )k
(k+q)?—p*> RiiqRirqip (k+q+p)?—p?

k+q+p)?—p° N .
(((k + Q)QR)H + ) (q#k&p ~ Futop ))} + O(eé, eg)\g).
qTp

+ Agt
Riyq4pBitq !
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One-loop calculation: finiteness of the function H

- \\ - \\
% 7 . —x 7 s
c vt ¢ty ve&t o

H(p q)1€(2)C2/ dlk v
’ 4 2m)* | Rpk?(k+ q)*(k + q + p)?

(¢ +p)° S 1 s S 1 4 242y,
+k4(k}+q+p>2(Kk Rk> + k‘4(k+q)2 (Kk Rk) +O(60’60)\0),
2 4
~ _ 6002 d*k 1 2

We see that the function H is finite in the ultraviolet region and is quadratic
in external momenta.
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Renormalization group functions defined in terms of the bare couplings

We will define the RG functions in terms of the bare couplings by the
equations

(76)i7 (00, Ag) = _dn(Zy) (@, ) A/w).

dln A
_ dInZy(a, A\ A/p)
’YV(OZO,)\O) = dln A ;
din Z.(a, N\, A
Ve, do) = = ;mA ]

where the differentiation is made at fixed values of o and A"/,

There renormalization group functions are

1. scheme independent at a fixed regularization;

2. depend on a regularization;

2. satisfy the NSVZ relation in all orders for N" =1 SQED with N flavors,
regularized by higher derivatives.
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New form of the NSVZ S-function

The NSVZ S-function can be equivalently rewritten in the form

Blao, o) _ 3C2 = T(R) + C(R)i (74)," (@0, Xo) /7 L& Blao, o)

a?d 2m 27 ap

Let us express the [-function in the right hand side in terms of the
renormalization constant Z,:

dOéO(OG Aa A//’L)
dIn A

dn Z,
= —q
a,\=const g A

Blao, Xo) =

a,A\=const_
Then, using the identity d(Zgl/QZVZC)/dlnA = 0 we obtain

d ln(Zch)

Blao, Ao) = —2ag T A

= 2ag (%(040, o)+ (o, /\0))’
o, \=const
where 7. and 7y are anomalous dimensions of the Faddeev—Popov ghosts
and of the quantum gauge superfield (defined in terms of the bare coupling
constants), respectively.
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New form of the NSVZ [-function and its graphical interpretation

Substituting this expression into the right hand side of the NSVZ relation
we obtain

5(0407 )\0)

2
Qg

~2C7v (a0, Mo) + C(R) (36);* (00, M) /).

1
= (3(;2 — T(R) — 2Cy7c(a0, Ao)

From this form of the NSVZ [S-function we see that the matter superfields
and ghosts similarly contribute to the right hand side.
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Renormalization group functions defined in terms of the renormalized

couplings

The RG functions are defined in terms of the renormalized couplings by
the equations

~ do
6(0/7)\) - dlnuv

(%)ij(a,)\) = dIn(Zy)i’ (o, o, A/ )

dlnp '
- _ dInZy(ag, Mo, A/p)
’YV(O‘v/\) = dlnu )
~ _ danc(Oéo,)\o,A/M)
TelasA) = dlnp '

where the differentiation is made at fixed values of aq and )\Sjk.
There renormalization group functions are
1. scheme and regularization dependent;

2. satisfy the NSVZ relation only for a special renormalization prescription,
called the NSVZ scheme.
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The NSVZ scheme in the non-Abelian case

The RG functions defined in terms of the renormalized coupling constant
are scheme dependent and satisfy the NSVZ relation only in a certain
subtraction scheme. Similarly to

A.L.Kataev and K.S., Nucl.Phys. B875 (2013) 459; Phys.Lett. B730 (2014) 184. ‘

we see that in the non-Abelian case the RG functions defined in terms
of the bare coupling constant coincide with ones defined in terms of the
renormalized coupling constants if the boundary conditions

Za(aa)‘vxo) = 11 (Z(b)lj (a,)\,xo) = 51J1 ZC(Oéa)‘wa) = 17

where xq is a fixed value of In A/u, are imposed on the renormalization
constants. (For 2o = 0 we obtain minimal subtractions.) We also assume
that the renormalization constants satisfy the equation

Zy =777

Possibly, these conditions give the NSVZ scheme with the higher covariant
derivative regularization.
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Three-loop terms quartic in the Yukawa couplings

To verify the above results we consider the three-loop terms quartic in the
Yukawa couplings. They correspond to the graphs

O @

V.Yu.Shakhmanov, K.S., Nucl.Phys., B920, (2017), 345. ‘

Attaching two external lines of the background gauge superfield we obtain
the diagrams contributing to the S-function.

D O
=
e S B B
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Three-loop NSVZ in terms of the bare Yukawa couplings

The corresponding contribution to the anomalous dimension is given by

the diagrams

The calculation gives the following result:
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Explicit form of the RG functions defined in terms of the bare couplings

The simplest regulator has the form F(k?/A%) = 1+ k?/A?. In this case
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and the NSVZ relation is valid for the RG functions defined in terms of the bare
couplings with the HD regularization.
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RG functions defined in terms of the renormalized couplings

The RG functions defined in terms of the renormalized couplings are
XN g + O(@) + O(X°).
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+0(a) + O(\°%).
We see that the considered part of this S-function is scheme-dependent
Imposing the boundary conditions
Z¢(a,)\,xo),;j =6;7; Zo(a, N\ o) = afag =1
we obtain g; = by = by = —xg. Therefore, by — g1 =0
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The NSVZ scheme in the non-Abelian case

This implies that the NSVZ relation
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is really valid for the RG functions defined in terms of the renormalized
couplings,
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Also we see that the NSVZ scheme is actually obtained with the higher
covariant derivative regularization supplemented by minimal subtractions.
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Conclusion

v In the case of using the higher covariant derivative regularization the
integrals defining the B-function are integrals of double total derivatives in
the momentum space. This has been proved in some theories in all loops.
For general non-Abelian SYM there are strong evidences in favour of this.

V" The factorization into double total derivatives naturally leads to the NSVZ
relation for RG functions defined in terms of the bare coupling constant,
which is valid independently of the subtraction scheme with the HD
regularization.

v For RG functions defined in terms of the renormalized coupling constant the
NSVZ scheme can be constructed by imposing simple boundary conditions
on the renormalization constants in the case of using the HD regularization.
The NSVZ scheme obtained in this way can be considered as minimal
subtractions.

v The non-trivial three-loop calculation for the terms quartic in the Yukawa
couplings confirms this proposal for the NSVZ scheme.

v For N'=1 SYM the derivation of the NSVZ relation seems to involve the
non-renormalization theorem for the three-point vertices with two ghost
legs and a single leg of the quantum gauge superfield.
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Thank you for the attention!




